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1. Given that 

 
4 3 2

2

2 2

3 2 5 4

4 4

x x x dx e
ax bx c

x x

   
   

 
,  2x    

 

find the values of the constants a, b, c, d and e. 

(4) 

June 2013 

 

 

2. Given that 

f(x) = ln x, x > 0 

 

sketch on separate axes the graphs of 

 

(i) y = f(x), 

 

(ii) y = |f(x)|, 

 

(iii) y = –f(x – 4). 

 

Show, on each diagram, the point where the graph meets or crosses the x-axis. 

In each case, state the equation of the asymptote. 

 

(7) 

Juen 2013 
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3.   

 
 

Figure 1 

 

Figure 1 shows a sketch of the curve C which has equation 

 

y = ex3 sin 3x,   −
3


  x  

3


. 

 

(a)  Find the x-coordinate of the turning point P on C, for which x > 0. 

 Give your answer as a multiple of . 

(6) 

(b)  Find an equation of the normal to C at the point where x = 0. 

(3) 

June 2012 

 

4. The point P is the point on the curve x = 2 tan 









12


y  with y-coordinate 

4


. 

 

Find an equation of the normal to the curve at P. 

(7) 

January 2012 
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5. Joan brings a cup of hot tea into a room and places the cup on a table. At time t minutes after 

Joan places the cup on the table, the temperature,   °C, of the tea is modelled by the equation 

 

  = 20 + Ae−kt, 

 

where A and k are positive constants. 

 

Given that the initial temperature of the tea was 90 °C, 

 

(a) find the value of A. 

(2) 

 

The tea takes 5 minutes to decrease in temperature from 90 °C to 55 °C. 

 

(b) Show that k = 
5

1
 ln 2. 

(3) 

(c) Find the rate at which the temperature of the tea is decreasing at the instant when t = 10. 

Give your answer, in °C per minute, to 3 decimal places. 

(3) 

January 2011 

 

 

6. Find algebraically the exact solutions to the equations 

 

(a)  ln (4 – 2x) + ln (9 – 3x) = 2 ln (x + 1), –1 < x < 2, 

(5) 

(b) 2x e3x+1 = 10. 

 

Give your answer to (b) in the form 
ln

ln

a b

c d




 where a, b, c and d are integers. 

(5) 

June 2013 
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7. (a) Prove that 





cos

sin
 + 





sin

cos
 = 2 cosec 2,       90n. 

(4) 

(b) Sketch the graph of y = 2 cosec 2θ for 0° < θ < 360°. 
(2) 

(c) Solve, for 0° < θ < 360°, the equation 

 





cos

sin
 + 





sin

cos
 = 3 

 

 giving your answers to 1 decimal place. 

(6) 

June 2007 

 

 

8. Solve 

cosec2 2x – cot 2x = 1 

for 0  x  180. 

(7) 

January 2010 
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9. The function f has domain –2 ≤ x ≤ 6 and is linear from (–2, 10) to (2, 0) and from (2, 0) to (6, 4). 

A sketch of the graph of y = f(x) is shown in Figure 1. 

 

 
Figure 1 

 

(a)  Write down the range of f. 

(1) 

(b) Find ff(0). 

(2) 

 

The function g is defined by 

 

g : 
4 3

5

x
x

x





, x  ℝ,  x ≠ 5. 

 

(c) Find g–1(x). 

(3) 

(d) Solve the equation gf(x) = 16. 

(5) 

June 2013 

 

TOTAL FOR PAPER: 75 MARKS 

END 
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Question 

Number 
Scheme Marks    

1 

 

 

 

By 

Division 

( ) ( )

x x

x x x x x x

x x x

x x x

x x x

x x

x x

x

- +

+ - - - + -

+ -

- + +

- + +

- -

+ -

- +

2

2 4 3 2

4 3 2

3 2

3 2

2

2

3 2 7

0 4 3 2 5 0 4

3 0 12

2 7 0

2 0 8

7 8 4

7 0 28

8 24

  

 a = 3   B1 

 Long division as far as 

.......

( ) ( )

................

.................

x x

x x x x x x

x x x

x

x

-

+ - - - + -

+ -

- +

- +

2

2 4 3 2

4 3 2

3

3

3 2

0 4 3 2 5 0 4

3 0 12

2

2

 M1 

   

 Two of b c d e= - = = - =2 7 8 24  A1 

 All four of b c d e= - = = - =2 7 8 24  A1 

  [4] 
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Question 

Number 
Scheme Marks    

2(i) 
 ln graph crossing x axis at (1,0)  

and asymptote at x=0 

B1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2(ii) 

Shape including cusp 

 

Touches or crosses the x axis at (1,0) 

Asymptote given as x=0 

B1ft 

 

B1ft 

B1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2(iii) 

Shape 

 

Crosses at (5, 0)  

 

Asymptote given as x=4 

 

 

B1 

 

B1ft 

 

B1 

 

 

 

 

 

 

 

 

[7] 
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Question 
Number 

Scheme Marks    

3.  (a)        3 3d
3 sin3 3 cos3

d

x xy
e x e x

x
               M1A1 

        
d

0
d

y

x
                3 ( 3sin3 3cos3 ) 0xe x x   M1 

 
     

 tan3 3x    
A1 

 

                                        

 
2 2

3
3 9

x x
 

    
M1A1 

  (6)                   

(b)  At x = 0       
d

3
d

y

x
                             B1 

  Equation of normal is 
1 0

3 0

y

x


 


  or any equivalent 

1

3
y x   M1A1 

  (3) 

  (9 marks) 

 

Question 

Number 
Scheme Marks 

4. 
 

M1, A1 

 
substitute   into  their   

M1, A1 

 When  y= . x=2√3 awrt 3.46 B1 

 
 

M1 

   oe A1 

  (7 marks) 

 

  



Gold 2: 10/12 10 

 

Question 
Number 

Scheme      Marks 

5.    

(a) 20 e ktA     (eqn *)   

    

   (0)0, 90 90 20 e kt A       
Substitutes 0t  and 90   into 

eqn * 
M1 

    
 90 20 70A A     70A   A1 

   (2) 

    

(b) 20 70e kt      

    
   (5)5, 55 55 20 70e kt        Substitutes 5t  and 55   into 

eqn * and rearranges eqn * to 

make e±5k the subject. 

M1 
                                     535

e
70

k  

    
 

                                     35
70

ln 5k   Takes ‘lns’ and proceeds 

 to make ‘±5k’ the subject. 
dM1 

    
                                      1

2
5 lnk     

    
 1

5
5 ln1 ln2 5 ln2 ln2k k k          Convincing proof that 1

5
ln 2k    A1    

   (3) 

    

(c)    
1
5

ln 2
20 70e

t



     

    

 
1
5

ln 2d 1
ln 2.(70)e

d 5

t

t

 
   

e kt    where 1
5
ln 2k     M1 
1
5

ln 2
14ln 2e

t
  A1  oe 

    
 

When 10,t 
2ln 2d

14ln 2e
dt

    
  

    
 d 7

ln 2 2.426015132...
d 2t


     

  

    

 Rate of decrease of  2.426 / minC  (3 dp.) awrt  2.426  A1 

   (3) 
   [8] 
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Question 

Number 
Scheme Marks    

6(a)   

                         2ln(4 2 )(9 3 ), ln( 1)x x x       M1,  M1 

                     So 2 236 30 6 2 1x x x x      and 25 32 35 0x x    A1 

   Solve      25 32 35 0x x    to give 
7

5
x   oe  ( Ignore the solution 5x  ) M1 A1 (5) 

  (b)                 Take loge’s to give   3 +1ln 2 +lne ln10x x                                     M1              

 ln 2+(3 +1)lne ln10x x   M1 

   

                                               (ln2+3lne) ln10 lne =..x x    dM1 

   

                                                                and uses lne = 1 M1 

                                                                 
1 ln10

3 ln 2
x

 



 A1        (5) 

  [10] 

 

Question 

Number 
Scheme Marks 

7.         (a) 







sin

cos

cos

sin
 = 

2 2sin cos

cos sin

 

 


 

M1      Use of common denominator to obtain single fraction  

M1 

 
                      = 

1

cos sin 
 

M1      Use of appropriate trig identity (in this case 
2 2sin cos 1   ) 

M1 

                       = 
1
2

1

sin 2
                                 Use of sin 2 2sin cos      M1 

                       = 2cosec2      ()     
A1  cso       

(4) 

(b) 

 

 

 

 

 

 

 

 

 

 

 

      y 

 

     2 

 

 
        O                      90°                180°                 270°                360°                

   –2 

 

 

Shape 

(May be translated but 

need to see 4“sections”)  

 

B1 

 

T.P.s at y = 2 , 

asymptotic at correct  

x-values (dotted lines not 

required) 

B1 dep.       

(2) 

(c) 2cosec2 3    

 
2

sin 2
3

                Allow   3
2sin

2



          [M1 for equation in sin2 ]        M1, A1 

 
(2  )    =   [  41.810…°, 138.189…° ;        401.810…°, 498.189…°] 

1st M1  for   180,   ;    2nd M1    adding 360° to at least one of values 
M1; M1 

                          = 20.9°, 69.1°, 200.9°, 249.1°   (1 d.p.)                             awrt                     A1,A1  (6) 
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Question 
Number 

Scheme Marks 

   

Q8  2cosec 2 cot 2 1, eqn *x x       0 180x    

   

 Using 2 2cosec 2 1 cot 2x x   gives 
M1 

 21 cot 2 cot 2 1x x    

   

 
2cot 2 cot 2 0x x       or     2cot 2 cot 2x x  A1 

   
  cot 2 cot 2 1 0x x        or   cot 2 1x   dM1 

   
 cot 2 0 or cot 2 1x x   A1 

   
 cot 2 0 (tan2 ) 2 90, 270x x x      

M1 

  

 45, 135x   

  

 cot 2 1 tan2 1 2 45, 225x x x      

  

 22.5, 112.5x   

   
 

Overall,  22.5, 45, 112.5, 135x   
A1 

B1 
   

  [7] 

 

Question 

Number 
Scheme Marks    

9(a)            0 f ( ) 10x„ „  B1          (1) 

 (b)              ff(0) = f(5),  = 3 B1, B1    (2) 

(c)                                   
4 3

(5 ) 4 3
5

x
y y x x

x


    


  

                                                        5 4 3y xy x     M1 

                                                       
5 4

5 4 ( 3)
3

y
y x y x

y


     


 dM1 

                                                                1 5 4
g ( )

3

x
x

x

 



 A1          (3) 

(d)                                     1gf ( ) 16 f ( ) g (16) 4x x        oe M1 A1 

                                                              f ( ) 4 6x x    B1 

 
                                                            

f ( ) 4 5 2.5 4 0.4 oex x x       
M1 A1  (5) 

  [11] 
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Statistics for C3 Practice Paper G2 

 
     Mean score for students achieving grade: 

Qu 
Max 
score 

Modal 
score 

Mean 
% 

 ALL A* A B C D E U 

1 4 4 68  2.71 3.64 3.19 2.81 2.48 2.12 1.81 1.31 

2 7 7 68  4.77 6.50 5.83 5.08 4.34 3.56 2.77 1.69 

3 9  62  5.56 8.61 7.40 5.94 4.41 2.88 1.60 0.57 

4 7  58  4.04 6.80 5.90 4.80 3.63 2.54 1.69 0.45 

5 8  59  4.68 7.37 6.26 5.19 4.42 3.62 2.74 1.92 

6 10 10 55  5.49 9.39 7.46 5.66 4.23 3.08 2.10 1.07 

7 12  69  8.24  10.40 8.65 7.42 5.93 4.39 2.51 

8 7  43  3.00  5.23 3.39 2.37 1.46 0.73 0.37 

9 11 4 45  4.99 8.50 6.41 4.95 3.90 3.02 2.11 1.19 

  75  58  43.48   58.08 46.47 37.20 28.21 19.94 11.08 

 

 

 


