6665/01
 Edexcel GCE
 Core Mathematics C3
 Gold Level (Harder) G2

Time: 1 hour 30 minutes

Materials required for examination Items included with question papers
Mathematical Formulae (Green)

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulas stored in them.

Instructions to Candidates

Write the name of the examining body (Edexcel), your centre number, candidate number, the unit title (Core Mathematics C3), the paper reference (6665), your surname, initials and signature.

Information for Candidates

A booklet 'Mathematical Formulae and Statistical Tables' is provided.
Full marks may be obtained for answers to ALL questions.
There are 8 questions in this question paper. The total mark for this paper is 75 .

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled.
You must show sufficient working to make your methods clear to the Examiner. Answers without working may gain no credit.

Suggested grade boundaries for this paper:

A^{*}	A	B	C	D	E
63	54	45	36	29	22

1. Given that

$$
\frac{3 x^{4}-2 x^{3}-5 x^{2}-4}{x^{2}-4} \equiv a x^{2}+b x+c+\frac{d x+e}{x^{2}-4}, \quad x \neq \pm 2
$$

find the values of the constants a, b, c, d and e.
2. Given that

$$
\mathrm{f}(x)=\ln x, \quad x>0
$$

sketch on separate axes the graphs of
(i) $y=\mathrm{f}(x)$,
(ii) $y=|f(x)|$,
(iii) $y=-\mathrm{f}(x-4)$.

Show, on each diagram, the point where the graph meets or crosses the x-axis.
In each case, state the equation of the asymptote.
(7)

Juen 2013
3.

Figure 1
Figure 1 shows a sketch of the curve C which has equation

$$
y=\mathrm{e}^{x \sqrt{3}} \sin 3 x, \quad-\frac{\pi}{3} \leq x \leq \frac{\pi}{3} .
$$

(a) Find the x-coordinate of the turning point P on C, for which $x>0$.

Give your answer as a multiple of π.
(b) Find an equation of the normal to C at the point where $x=0$.
4. The point P is the point on the curve $x=2 \tan \left(y+\frac{\pi}{12}\right)$ with y-coordinate $\frac{\pi}{4}$.

Find an equation of the normal to the curve at P.

January 2012
5. Joan brings a cup of hot tea into a room and places the cup on a table. At time t minutes after Joan places the cup on the table, the temperature, $\theta^{\circ} \mathrm{C}$, of the tea is modelled by the equation

$$
\theta=20+A \mathrm{e}^{-k t},
$$

where A and k are positive constants.
Given that the initial temperature of the tea was $90^{\circ} \mathrm{C}$,
(a) find the value of A.

The tea takes 5 minutes to decrease in temperature from $90^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$.
(b) Show that $k=\frac{1}{5} \ln 2$.
(c) Find the rate at which the temperature of the tea is decreasing at the instant when $t=10$. Give your answer, in ${ }^{\circ} \mathrm{C}$ per minute, to 3 decimal places.

January 2011
6. Find algebraically the exact solutions to the equations
(a) $\ln (4-2 x)+\ln (9-3 x)=2 \ln (x+1), \quad-1<x<2$,
(b) $2^{x} \mathrm{e}^{3 x+1}=10$.

Give your answer to (b) in the form $\frac{a+\ln b}{c+\ln d}$ where a, b, c and d are integers.

June 2013
7. (a) Prove that

$$
\begin{equation*}
\frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\sin \theta}=2 \operatorname{cosec} 2 \theta, \quad \theta \neq 90 n^{\circ} \tag{4}
\end{equation*}
$$

(b) Sketch the graph of $y=2 \operatorname{cosec} 2 \theta$ for $0^{\circ}<\theta<360^{\circ}$.
(c) Solve, for $0^{\circ}<\theta<360^{\circ}$, the equation

$$
\frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\sin \theta}=3
$$

giving your answers to 1 decimal place.
(6)

June 2007
8. Solve

$$
\operatorname{cosec}^{2} 2 x-\cot 2 x=1
$$

for $0 \leq x \leq 180^{\circ}$.
9. The function f has domain $-2 \leq x \leq 6$ and is linear from $(-2,10)$ to $(2,0)$ and from $(2,0)$ to $(6,4)$. A sketch of the graph of $y=\mathrm{f}(x)$ is shown in Figure 1.

Figure 1
(a) Write down the range of f .
(b) Find $\mathrm{ff}(0)$.

The function g is defined by

$$
\mathrm{g}: x \rightarrow \frac{4+3 x}{5-x}, \quad x \in \mathbb{R}, \quad x \neq 5
$$

(c) Find $\mathrm{g}^{-1}(x)$.
(d) Solve the equation $\operatorname{gf}(x)=16$.

END

Question Number	Scheme	Marks
By Division	$\begin{array}{r} 3 x^{2}-2 x+7 \\ x ^ { 2 } (+ 0 x) - 4 \longdiv { 3 x ^ { 4 } - 2 x ^ { 3 } - 5 x ^ { 2 } + (0 x) - 4 } \\ \frac{3 x^{4}+0 x^{3}-12 x^{2}}{-2 x^{3}+7 x^{2}+0 x} \\ \frac{-2 x^{3}+0 x^{2}+8 x}{7 x^{2}-8 x-4} \\ \frac{7 x^{2}+0 x-28}{-8 x+24} \end{array}$ Long division as far as Two of $b=-2 \quad c=7 \quad d=-8 \quad e=24$ All four of $b=-2 \quad c=7 \quad d=-8 \quad e=24$	
		B1
		M1
		A1

Question Number	Scheme	Marks
3. (a)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\sqrt{3} e^{x \sqrt{3}} \sin 3 x+3 e^{x \sqrt{3}} \cos 3 x$	M1A1
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=0 \quad e^{x \sqrt{3}}(\sqrt{3} \sin 3 x+3 \cos 3 x)=0$	M1
	$\tan 3 x=-\sqrt{3}$	A1
	$3 x=\frac{2 \pi}{2} \Rightarrow x=\frac{2 \pi}{n}$	M1A1
		(6)
(b)	$\text { At } x=0 \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}=3$	B1
	Equation of normal is $-\frac{1}{3}=\frac{y-0}{x-0}$ or any equivalent $y=-\frac{1}{3} x$	M1A1
		$\begin{array}{r} \text { (3) } \\ \text { (9 marks) } \end{array}$

Question Number	Scheme	Marks
4.	$\left(\frac{d x}{d y}\right)=2 \sec ^{2}\left(y+\frac{\pi}{12}\right)$ substitute $y=\frac{\pi}{4}$ into their $\frac{d x}{d y}=2 \sec ^{2}\left(\frac{\pi}{4}+\frac{\pi}{12}\right)=\mathbf{8}$ When $y=\frac{\pi}{4} \cdot x=2 \sqrt{3}$ awrt 3.46 $\left(y-\frac{\pi}{4}\right)=$ their $m(x-$ their $2 \sqrt{3})$ $\left(y-\frac{\pi}{4}\right)=-8(x-2 \sqrt{3})$	M1, A1
	oe M1, A1	

Question Number	Scheme		Marks
(a)	$\begin{aligned} & \theta=20+A \mathrm{e}^{-k t} \quad(\mathrm{eqn} *) \\ & \{t=0, \theta=90 \Rightarrow\} \quad 90=20+A \mathrm{e}^{-k(0)} \\ & 90=20+A \Rightarrow A=70 \end{aligned}$	Substitutes $t=0$ and $\theta=90$ into eqn * $A=70$	M1 A1 (2)
(b)	$\begin{aligned} & \theta=20+70 \mathrm{e}^{-k t} \\ & \{t=5, \theta=55 \Rightarrow\} \begin{array}{c} 55=20+70 \mathrm{e}^{-k(5)} \\ \frac{35}{70}=\mathrm{e}^{-5 k} \end{array} \\ & \ln \left(\frac{35}{70}\right)=-5 k \\ & -5 k=\ln \left(\frac{1}{2}\right) \\ & -5 k=\ln 1-\ln 2 \Rightarrow-5 k=-\ln 2 \Rightarrow k=\frac{1}{5} \ln 2 \end{aligned}$	Substitutes $t=5$ and $\theta=55$ into eqn * and rearranges eqn * to make $\mathrm{e}^{ \pm 5 \mathrm{k}}$ the subject. Takes 'lns' and proceeds to make ' $\pm 5 k$ ' the subject. Convincing proof that $k=\frac{1}{5} \ln 2$	M1 dM1 A1 * (3)
(c)	$\begin{aligned} \theta & =20+70 \mathrm{e}^{-\frac{1}{5} t \ln 2} \\ \frac{\mathrm{~d} \theta}{\mathrm{~d} t} & =-\frac{1}{5} \ln 2 \cdot(70) \mathrm{e}^{-\frac{1}{5} \operatorname{tn} 2} \end{aligned}$ When $t=10, \frac{\mathrm{~d} \theta}{\mathrm{~d} t}=-14 \ln 2 \mathrm{e}^{-2 \ln 2}$ $\frac{\mathrm{d} \theta}{\mathrm{~d} t}=-\frac{7}{2} \ln 2=-2.426015132 \ldots$ Rate of decrease of $\theta=2.426{ }^{\circ} \mathrm{C} / \mathrm{min}$ (3 dp.)	$\begin{array}{r} \pm \alpha \mathrm{e}^{-k t} \quad \text { where } k=\frac{1}{5} \ln 2 \\ -14 \ln 2 \mathrm{e}^{-\frac{1}{5} \ln 2} \end{array}$ awrt ± 2.426	M1 A1 oe A1

Question Number	Scheme	Marks
6(a) (b)	$\ln (4-2 x)(9-3 x),=\ln (x+1)^{2}$ So $36-30 x+6 x^{2}=x^{2}+2 x+1$ and $5 x^{2}-32 x+35=0$ Solve $\quad 5 x^{2}-32 x+35=0$ to give $x=\frac{7}{5}$ oe (Ignore the solution $x=5$) Take $\log _{\mathrm{e}}$'s to give $\ln 2^{x}+\ln \mathrm{e}^{3 x+1}=\ln 10$ $\begin{aligned} & x \ln 2+(3 x+1) \operatorname{lne}=\ln 10 \\ & x(\ln 2+3 \ln \mathrm{e})=\ln 10-\ln \mathrm{e} \Rightarrow x=. . \end{aligned}$ and uses lne $=1$ $x=\frac{-1+\ln 10}{3+\ln 2}$	M1, M1 A1 M1 A1 (5) M1 M1 dM1 M1 A1 (5) [10]
Question Number	Scheme	Marks
7. (a)	$\frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\sin \theta}=\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\cos \theta \sin \theta}$ M1 Use of common denominator to obtain single fraction $=\frac{1}{\cos \theta \sin \theta}$ M1 Use of appropriate trig identity (in this case $\sin ^{2} \theta+\cos ^{2} \theta=1$) $\begin{array}{lll} =\frac{1}{\frac{1}{2} \sin 2 \theta} & \text { Use of } \sin 2 \theta=2 \sin \theta \cos \theta \\ =2 \operatorname{cosec} 2 \theta & \text { (*) } \end{array}$	M1 M1 M1 A1 cso (4)
		B1 B1 dep. (2)
(c)	$\begin{aligned} & 2 \operatorname{cosec} 2 \theta=3 \\ & \sin 2 \theta=\frac{2}{3} \quad \text { Allow } \quad \frac{2}{\sin 2 \theta}=3 \quad[\mathrm{M} 1 \text { for equation in } \sin 2 \theta] \\ & (2 \theta)=\left[41.810 \ldots{ }^{\circ}, 138.189 \ldots .^{\circ} ; \quad 401.810 \ldots{ }^{\circ}, 498.189 \ldots{ }^{\circ}\right] \\ & \text { 1st M1 for } \alpha, 180-\alpha ; 2^{\text {nd }} \mathrm{M} 1 \quad \text { adding } 360^{\circ} \text { to at least one of values } \\ & \theta=20.9^{\circ}, 69.1^{\circ}, 200.9^{\circ}, 249.1^{\circ} \quad(1 \text { d.p. }) \quad \text { awrt } \end{aligned}$	$\begin{aligned} & \mathrm{M} 1, \mathrm{~A} 1 \\ & \mathrm{M} 1 ; \mathrm{M} 1 \\ & \mathrm{~A} 1, \mathrm{~A} 1 \end{aligned}$

Question Number	Scheme	Marks
Q8	$\operatorname{cosec}^{2} 2 x-\cot 2 x=1, \quad($ eqn $*) \quad 0 \leq x \leq 180^{\circ}$	
	Using $\operatorname{cosec}^{2} 2 x=1+\cot ^{2} 2 x$ gives $1+\cot ^{2} 2 x-\cot 2 x=1$	M1
	$\cot ^{2} 2 x-\cot 2 x=0 \quad$ or $\quad \cot ^{2} 2 x=\cot 2 x$	A1
	$\cot 2 x(\cot 2 x-1)=0 \quad$ or $\quad \cot 2 x=1$	dM1
	$\cot 2 x=0$ or $\cot 2 x=1$	A1
	$\cot 2 x=0 \Rightarrow(\tan 2 x \rightarrow \infty) \Rightarrow 2 x=90,270$	
	$\Rightarrow x=45,135$	
	$\cot 2 x=1 \Rightarrow \tan 2 x=1 \Rightarrow 2 x=45,225$	M1
	$\Rightarrow x=22.5,112.5$	
	Overall, $x=\{22.5,45,112.5,135\}$	A1
	Overall, $x=\{2.5,45,112.5,135\}$	B1
		[7]

Question Number	Scheme	Marks
9(a)	$0, \mathrm{f}(x), \ldots$	B1 (1)
(b)	$\mathrm{ff}(0)=\mathrm{f}(5),=3$	B1, B1 (2)
(c)	$y=\frac{4+3 x}{5-x} \Rightarrow y(5-x)=4+3 x$	
(d)	$\Rightarrow 5 y-4=x y+3 x$	M1
	$\Rightarrow 5 y-4=x(y+3) \Rightarrow x=\frac{5 y-4}{y+3}$	dM1
	$\mathrm{g}^{-1}(x)=\frac{5 x-4}{3+x}$	A1 (3)
	$\begin{gathered} \operatorname{gf}(x)=16 \Rightarrow \mathrm{f}(x)=\mathrm{g}^{-1}(16)=4 \text { oe } \\ \mathrm{f}(x)=4 \Rightarrow x=6 \end{gathered}$	$\begin{aligned} & \text { M1 A1 } \\ & \text { B1 } \end{aligned}$
	$\mathrm{f}(x)=4 \Rightarrow 5-2.5 x=4 \Rightarrow x=0.4$ oe	M1 A1 (5)
		[11]

Statistics for C3 Practice Paper G2

Qu	Max score	Modal score	Mean \%	Mean score for students achieving grade:							
				ALL	A*	A	B	C	D	E	U
1	4	4	68	2.71	3.64	3.19	2.81	2.48	2.12	1.81	1.31
2	7	7	68	4.77	6.50	5.83	5.08	4.34	3.56	2.77	1.69
3	9		62	5.56	8.61	7.40	5.94	4.41	2.88	1.60	0.57
4	7		58	4.04	6.80	5.90	4.80	3.63	2.54	1.69	0.45
5	8		59	4.68	7.37	6.26	5.19	4.42	3.62	2.74	1.92
6	10	10	55	5.49	9.39	7.46	5.66	4.23	3.08	2.10	1.07
7	12		69	8.24		10.40	8.65	7.42	5.93	4.39	2.51
8	7		43	3.00		5.23	3.39	2.37	1.46	0.73	0.37
9	11	4	45	4.99	8.50	6.41	4.95	3.90	3.02	2.11	1.19
	75		58	43.48		58.08	46.47	37.20	28.21	19.94	11.08

