## AQA

Please write clearly in block capitals.

Centre number |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | Candidate number



Surname
Forename(s)
Candidate signature $\qquad$

## GCSE

## PHYSICS

## Foundation Tier

Friday 16 June 2017
Morning
Time allowed: 1 hour

## Materials

For this paper you must have:

- a ruler
- a calculator
- the Physics Equations Sheet (enclosed).


## Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.


## Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 60 .
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.
- Question 8(b) should be answered in continuous prose.

In this question you will be marked on your ability to:

- use good English
- organise information clearly
- use specialist vocabulary where appropriate.

| For Examiner's Use |  |
| :---: | :---: |
| Examiner's Initials |  |
| Question | Mark |
| 1 |  |
| 2 |  |
| 3 |  |
| 4 |  |
| 5 |  |
| 6 |  |
| 7 |  |
| 8 |  |
| 9 |  |
| TOTAL |  |

## Advice

- In all calculations, show clearly how you work out your answer.

1 Two children visit a playground.
1 (a) Figure 1 shows the two children, $\mathbf{A}$ and $\mathbf{B}$, sitting on a see-saw.

Figure 1


1 (a) (i) The weight of child $\mathbf{A}$ and the weight of child $\mathbf{B}$ each create a moment about the pivot.
What is meant by 'the moment of a force'?
Tick $(\checkmark)$ one box.
the direction of the force

the turning effect of the force

the size of the force $\square$

1 (a) (ii) The see-saw is balanced.
Use the correct answer from the box to complete the sentence.

| smaller than | equal to | greater than |
| :--- | :--- | :--- |

The size of the moment of child $\mathbf{A}$ is $\qquad$ the size of the moment of child $\mathbf{B}$.

1 (a) (iii) Child $\mathbf{B}$ has a weight of 400 N and is sitting 1.5 m from the pivot.
Calculate the moment of child $\mathbf{B}$ about the pivot.
Use the correct equation from the Physics Equations Sheet.
Choose the correct unit.
kilogram newton-metre newton per metre
$\qquad$
$\qquad$
$\qquad$
$\qquad$
Moment $=$ $\qquad$ unit $\qquad$

## Question 1 continues on the next page

1 (b) Child $\mathbf{A}$ now sits on a swing as shown in Figure 2. The swing is not moving.

Figure 2


Which arrow, $\mathbf{J}, \mathbf{K}$ or $\mathbf{L}$, points to the centre of mass of the child? Tick $(\checkmark)$ one box.


L


1 (c) The child on the swing is now moving backwards and forwards like a pendulum. The frequency of the swing is 0.5 hertz.

Calculate the periodic time of the swing.
Use the correct equation from the Physics Equations Sheet.
[2 marks]
$\qquad$
$\qquad$
Periodic time $=$ $\qquad$ s


2 Figure 3 shows a traditional transformer.

Figure 3


2 (a) (i) Use the correct answer from the box to complete the sentence.

The potential difference across the secondary coil is $\qquad$ the potential difference across the primary coil.

2 (a) (ii) Give a reason for your answer to part 2 (a) (i).
$\qquad$
$\qquad$

2 (b) What is the core of the transformer made from?
$\qquad$

2 (c) What happens as the magnetic field in the core of the transformer changes? Tick $(\checkmark)$ one box.

The mass of the core increases.


A potential difference is induced across the secondary coil.


The temperature of the core decreases.


2 (d) The power supply to the transformer is connected to the mains electricity supply.
What is the frequency of the mains electricity supply?
Tick $(\checkmark)$ one box.

25 hertz


50 hertz


100 hertz


2 (e) The power input of the transformer is 2 W . The transformer is $100 \%$ efficient.
State the power output of the transformer.
$\qquad$

## Turn over for the next question

3 A student made a hydraulic system using two syringes filled with water. The syringes were joined with a tube, as shown in Figure 4.

Figure 4


3 (a) What property of water makes it suitable to use in a hydraulic system?
[1 mark] Tick $(\checkmark)$ one box.

It is almost incompressible.


It is a poor electrical conductor. $\square$

It is transparent. $\square$

3 (b) The student investigated how changing the cross-sectional area of piston $\mathbf{B}$ affected the force needed to keep piston B moving at a constant rate.

The results are shown in Figure 5.

Figure 5


3 (b) (i) Describe the relationship between the cross-sectional area of piston $\mathbf{B}$ and the force applied to piston B shown in Figure 5.
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Question 3 continues on the next page

3 (b) (ii) The student used a newton-meter to measure the force applied to piston $\mathbf{B}$.
The newton-meter is shown in Figure 6.

Figure 6


What is the smallest change in force that can be measured with this newton-meter?
[1 mark]
Tick $(\checkmark)$ one box.
0.1 N $\square$
0.5 N $\square$

1 N $\square$

4 (a) Ultrasound can be used to produce an image of an unborn baby.
4 (a) (i) What is ultrasound?
[1 mark]
$\qquad$
$\qquad$

4 (a) (ii) What happens to the ultrasound when it reaches the skin of an unborn baby?
Tick $(\checkmark)$ one box.

It is all reflected and none is transmitted.


Some is reflected and some is transmitted.


None is reflected and it is all transmitted.


4 (a) (iii) Give another medical use of ultrasound.
Tick $(\checkmark)$ one box.
breaking up kidney stones $\square$
treating cancer

destroying bacteria


Question 4 continues on the next page

4 (b) A parking sensor on the back of a car emits an ultrasound pulse and receives the reflected pulse as shown in Figure 7.

Figure 7


Complete the sentence to describe how the time taken for the reflected pulse to return to the car changes as the car moves.

As the car moves closer to the wall the reflected pulse takes $\qquad$ time to return to the car.

4 (c) The parking sensor emits an ultrasound pulse. The reflected pulse is received 0.006 seconds later.

The speed of ultrasound in air is $330 \mathrm{~m} / \mathrm{s}$.
Calculate the distance from the car to the wall.
Use the correct equation from the Physics Equations Sheet.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
Distance from the car to the wall = $\qquad$ m

4 (d) There are four parking sensors spaced equally along the back of the car.
Suggest one advantage of using four sensors instead of just using one sensor.
[1 mark]
$\qquad$
$\qquad$

5 A student investigates how a lens forms an image of a light bulb.
The image is formed on a screen.
Figure 8 shows the apparatus used.

Figure 8


5 (a) (i) Name the process that occurs at the lens to make an image form on the screen.
[1 mark]
$\qquad$

5 (a) (ii) Use the correct answer from the box to complete the sentence.

| real | upright | virtual |
| :--- | :--- | :--- |

Light arriving on the screen forms an image which is $\qquad$ .

5 (a) (iii) The student places an object 2.0 cm tall near to the lens. The image formed on the screen is 3.0 cm tall.

Calculate the magnification of the image.
Use the correct equation from the Physics Equations Sheet.
$\qquad$
$\qquad$
Magnification $=$ $\qquad$

5 (b) Figure 9 shows a ray diagram of a converging (convex) lens with an object. The diagram shows two rays of light leaving the object and reaching the lens.

Figure 9


5 (b) (i) Complete Figure 9 to show how these two rays form an image.

5 (b) (ii) Mark the position of the image with an arrow.

5 (b) (iii) State the name of the two points labelled $\mathbf{F}$ on Figure 9.

5 (c) Another student investigates how light travels in a semi-circular glass block.
The student shines a ray of light into a semi-circular glass block from three different directions as shown in Figure 10.

Figure 10

X

Y

Z

5 (c) (i) Which diagram, $\mathbf{X}, \mathbf{Y}$ or $\mathbf{Z}$, shows total internal reflection of the light?

Diagram $\qquad$

5 (c) (ii) Which angle, $\mathbf{A}, \mathbf{B}$ or $\mathbf{C}$, is the critical angle of the light in the block?
[1 mark]
Angle $\qquad$

6 Figure 11 shows a cyclist moving at a constant speed around a circular part of a cycle track.

There is a centripetal force acting on the cyclist when he is in the position shown in Figure 11.

Figure 11


6 (a) (i) When the cyclist is in the position shown in Figure 11, in which direction, A, B or C, does the centripetal force act?
[1 mark]
Direction $\qquad$

6 (a) (ii) What effect does the centripetal force have on the cyclist?
[1 mark]
$\qquad$
$\qquad$

## Question 6 continues on the next page

6 (b) (i) The cyclist moves around the circular part of the track a second time, at the same speed. This time he is closer to the outside of the bend.

What effect does this have on the centripetal force needed?
Tick $(\checkmark)$ one box.

The centripetal force is bigger.


The centripetal force stays the same.


The centripetal force is smaller. $\square$

6 (b) (ii) A second cyclist moves around the circular part of the track. The second cyclist has a greater mass than the first cyclist.

What effect does the greater mass have on the centripetal force needed?
[1 mark] Tick $(\checkmark)$ one box.

The centripetal force is bigger.


The centripetal force stays the same. $\square$

The centripetal force is smaller.


6 (c) Figure 12 shows a stationary cyclist with both feet on the pedals.

Figure 12


Use the correct answers from the box to complete the sentence.
Each answer may be used once, more than once or not at all.

| heavy | high | low | narrow | wide |
| :--- | :--- | :--- | :--- | :--- |

The cyclist on the stationary bicycle is unstable and is likely to topple over.
This is because the cyclist and bicycle have a $\qquad$ centre of mass and a
$\qquad$ base.

Turn over for the next question
$7 \quad$ Figure 13 shows a loudspeaker made by a student. When there is a current in the coil the paper cone moves.

Figure 13


The student investigates how changing the size of the current in the coil of wire affects the distance moved by the paper cone.

7 (a) State two variables the student should control.
[2 marks]
1 $\qquad$
$\qquad$
2 $\qquad$
$\qquad$

7 (b) The results of the student's investigation are shown in Figure 14.

Figure 14


7 (b) (i) When the current increases from 0.5 A to 0.9 A , how much does the distance moved increase?
$\qquad$
Increase in distance moved = $\qquad$ cm

7 (b) (ii) State two conclusions that can be made from the graph.

1 $\qquad$
$\qquad$
2 $\qquad$
$\qquad$

## Turn over for the next question

8 (a) Glasses may be used to correct defects of vision. Some glasses have been designed with lenses that can be adjusted to give different focal lengths.

Suggest one advantage of using adjustable lenses in glasses.
[1 mark]
$\qquad$
$\qquad$

8 (b) In this question you will gain marks for using good English, organising information clearly and using scientific words correctly.

Explain how the human eye forms an image.
Your explanation should include:

- how a normal eye causes light from objects at different distances to form an image
- why long sight and short sight cause blurred images.

Do not include diagrams in your answer.
$\qquad$
Extra space $\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Turn over for the next question

9 CT scans are used by doctors to create three-dimensional images of a patient's body.
9 (a) (i) Explain why CT scans can increase the risk of cancer to the patient.
$\qquad$
$\qquad$
$\qquad$
$\qquad$

9 (a) (ii) Although CT scans increase the risk of cancer they are still carried out. Suggest why.
$\qquad$
$\qquad$
$\qquad$

9 (b) A child has a CT scan. Her mother stays in the room with her during the scan. Suggest one precaution that the mother should take during the scan.
$\qquad$
$\qquad$

9 (c) Ultrasound can also be used to create three-dimensional images of a patient. State one advantage of using CT scans rather than ultrasound scans.
$\qquad$
$\qquad$

There are no questions printed on this page

DO NOT WRITE ON THIS PAGE
ANSWER IN THE SPACES PROVIDED

There are no questions printed on this page

DO NOT WRITE ON THIS PAGE
ANSWER IN THE SPACES PROVIDED

There are no questions printed on this page

DO NOT WRITE ON THIS PAGE
ANSWER IN THE SPACES PROVIDED

There are no questions printed on this page

DO NOT WRITE ON THIS PAGE
ANSWER IN THE SPACES PROVIDED

## Copyright information

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third party copyright material will be published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House,
Guildford, GU2 7XJ.
Copyright © 2017 AQA and its licensors. All rights reserved.

