edexcel 쁯

Mark Scheme (Results)

November 2013

Pearson Edexcel GCSE
In Mathematics Modular (2MB01)
Unit 3: (5MB3H_01) Higher (Calculator)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

November 2013
Publications Code UG037500
All the material in this publication is copyright
© Pearson Education Ltd 2013

NOTES ON MARKI NG PRI NCI PLES

1 All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.

3 All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

4 Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.

5 Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

6 Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear Comprehension and meaning is clear by using correct notation and labeling conventions.
ii) select and use a form and style of writing appropriate to purpose and to complex subject matter Reasoning, explanation or argument is correct and appropriately structured to convey mathematical reasoning.
iii) organise information clearly and coherently, using specialist vocabulary when appropriate.

The mathematical methods and processes used are coherently and clearly organised and the appropriate mathematical vocabulary used.

With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks. Send the response to review, and discuss each of these situations with your Team Leader.
If there is no answer on the answer line then check the working for an obvious answer.
Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks. Discuss each of these situations with your Team Leader.
If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.

Follow through marks

Follow through marks which involve a single stage calculation can be awarded without working since you can check the answer yourself, but if ambiguous do not award.
Follow through marks which involve more than one stage of calculation can only be awarded on sight of the relevant working, even if it appears obvious that there is only one way you could get the answer given.
$9 \quad$ I gnoring subsequent work
It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: e.g. incorrect canceling of a fraction that would otherwise be correct
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect e.g. algebra.
Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

Probability

Probability answers must be given a fractions, percentages or decimals. If a candidate gives a decimal equivalent to a probability, this should be written to at least 2 decimal places (unless tenths).
Incorrect notation should lose the accuracy marks, but be awarded any implied method marks.
If a probability answer is given on the answer line using both incorrect and correct notation, award the marks.
If a probability fraction is given then cancelled incorrectly, ignore the incorrectly cancelled answer.

Linear equations

Full marks can be gained if the solution alone is given on the answer line, or otherwise unambiguously indicated in working (without contradiction elsewhere). Where the correct solution only is shown substituted, but not identified as the solution, the accuracy mark is lost but any method marks can be awarded.

Parts of questions
Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

Range of answers

Unless otherwise stated, when an answer is given as a range (e.g 3.5-4.2) then this is inclusive of the end points (e.g 3.5, 4.2) and includes all numbers within the range (e.g 4, 4.1)

```
Guidance on the use of codes within this mark scheme
M1 - method mark
A1 - accuracy mark
B1 - Working mark
C1 - communication mark
QWC - quality of written communication
oe - or equivalent
cao - correct answer only
ft - follow through
sc - special case
dep - dependent (on a previous mark or conclusion)
indep - independent
isw - ignore subsequent working
```


PAPER: 5MB3H_01	Working			Answer	Mark

PAPER: 5MB3H_01

Question	Working	Answer	Mark	Notes
*5	Key ring: $1.6 \times 9=14.4$ Purse : $\quad 3.2 \times 8=25.6$	$\begin{gathered} \text { Key ring } £ 1.60 \\ \text { Purse } £ 3.20 \end{gathered}$	4	M1 for $9 x$ or $8 \times 2 x$ (where x is the price of a key ring) M1 for equation $9 x+8 \times 2 x=40$ oe A1 for 1.6 and 3.2 C1 (dep on M2) for both "£1.60" and "£3.20" clearly identified for correct items with correct money notation OR M1 for (8×2) : $9(=16: 9)$ M1 for $40 \div(16+9)$ A1 for 1.6 and 3.2 C1 (dep on M2) for both "£1.60" and "£3.20" clearly identified for correct items with correct money notation OR M2 for trial with attempt to evaluate $9 x$ and $8 \times 2 x$ with $£ 1<x<£ 2$ (M1 for trial with attempt to evaluate $9 x$ and $8 \times 2 x$ with $£ 1 \leq x \leq £ 4$) A1 for 1.6 and 3.2 C1 (dep on M2) for both "£1.60" and "£3.20" clearly identified for correct items with correct money notation [SC: B2 for both $£ 1.60$ cao and $£ 3.20$ cao clearly identified for correct items with correct money notation if no working shown]

PAPER: 5MB3H_01

Question	Working	Answer	Mark	Notes
6		58.05	4	B1 for identifying 19.5(0) and 15(.00) M1 for a correct method to find the total cost of their identified tickets for the family, or for a correct method to find the discounted cost of at least one of the identified tickets M1 for a correct method to find the total discounted cost of their identified tickets A1 cao
7		Correct region shaded	3	B1 for perpendicular bisector within guidelines B1 for arc of circle, centre A, within guidelines B1 ft for a correct region shaded or otherwise indicated from their perpendicular bisector of AB and their arc drawn, centre A

PAPER: 5MB3H_01				
Question	Working	Answer	Mark	Notes
*8	$\begin{aligned} & 179 \div 70=2.5(571 \ldots . .) \\ & 275 \div 100=2.7(5) \\ & 399 \div 150=2.6(66 \ldots .) \end{aligned}$ $\begin{aligned} & 70 \div 179=0.39(11 \ldots .) \\ & 100 \div 275=0.36(36 \ldots) \\ & 150 \div 399=0.37(59 \ldots) \end{aligned}$	70 ml tube with reason	4	Using pence per ml M1 for a correct method of finding the cost per millilitre (or cost $/ 10 \mathrm{ml}$ etc) for one of the sizes M1 for a correct method of finding the cost per millilitre (or cost $/ 10 \mathrm{ml}$ etc. must be consistent) for each of the sizes A1 for 2.5(571.....) (70 ml) and 2.7(5) (100 ml) and 2.6(66....) (150 ml) or equivalent depending upon units used. These values can be rounded or truncated as long as they remain different C1 (dep on M1) for selecting the tube with the best value for money based upon a comparison of their 3 values. OR Using ml per 1p M1 for a correct method of finding the volume per pence (or $£$) for one of the sizes M1 for a correct method of finding the volume per pence (or $£$) for each of the sizes, with consistent units A1 for $0.39(11 \ldots).(70 \mathrm{ml})$ and $0.36(36 \ldots)(100 \mathrm{ml})$ and $0.37(59 \ldots)$ (150 ml) or equivalent depending upon units used. These values can be rounded or truncated as long as they remain different C 1 (dep on M 1) for selecting the tube with the best value for money based upon a comparison of their 3 values.
9 (a) (b) (c)	$\begin{array}{\|rrrrrrrr} x & -1 & 0 & 1 & 2 & 3 & 4 & 5 \\ y & \mathbf{9} & 3 & -1 & -3 & -3 & -\mathbf{1} & 3 \end{array}$	$9,-3,-1$ Correct graph $0.7,4.3$	2 2 2	B2 for a fully correct table of values (B1 for at least one correct extra entry) B1 (dep on at least B1 in (a)) for all of their points correctly plotted B1 (dep on previous B1) for smooth curve through all 7 of their points B1 for an answer rounding to 0.7 or ft their graph B1 for an answer rounding to 4.3 or ft their graph

PAPER: 5MB3H_01				
Question	Working	Answer	Mark	Notes
10 (a) (b)		10.25 $t=\frac{P+3}{4}$	2 2	M1 for an attempt to expand the bracket or divide both sides by 4 as a first step. A1 for 10.25 oe M1 for a correct first step of either adding 3 to both sides or dividing both sides by 4 A1 for $t=\frac{P+3}{4}$ oe [SC: B1 for $P+3 \div 4$ if M0 scored]
11		66.7	3	M1 for $\tan (y=) \frac{86}{37}(=2.3243 .$. M1 (dep) for $\tan ^{-1}$ "2.32(43..)" $=$ or $\tan ^{-1}\left(\frac{86}{37}\right)$ (accept 'shift tan' or 'inv tan' for $\tan ^{-1}$) A1 for answer in the range 66.6° to 66.8° [SC: B1 for an answer in the range 23.2 to 23.3 if M0 scored]
12		Region identified	4	B1 for $x+y=6$ or $x=-1$ or $y=2$ drawn B1 for $x+y=6$ and $x=-1$ and $y=2$ drawn M1 for consistent shading (in or out) for any two of the lines $x+y=$ $6, x=-1, y=2$ A1 lines drawn, and correct region identified by either shading in, or shading out; the letter R is not required, but necessary if no shading. Note: Lines may be solid or dotted/dashed etc

Question	Working	Answer	Mark	Notes
13		32.2	4	M1 for $B C=\frac{10}{4} \times 5(=12.5)$ M1 for $E C=\frac{10}{4} \times 5.8-5.8(=8.7)$ M1 (dep on at least M1) for ' 12.5 ' $+{ }^{\prime} 8.7$ ' $+5+6$ A1 cao OR M1 for $B C=\frac{5}{4} \times 10(=12.5)$ M1 for $E C=\frac{5.8}{5} \times ‘ 12.5 '-5.8(=8.7)$ M1 (dep on at least M1) for ' 12.5 ' $+{ }^{‘} 8.7$ ' $+5+6$ A1 cao OR M1 for $B C=\frac{5}{4} \times 10(=12.5)$ M1 for $E C=\frac{6}{4} \times 5.8(=8.7)$ M1 (dep on at least M1) for ' 12.5 ' $+{ }^{\prime} 8.7$ ' $+5+6$ A1 cao OR M1 for $4+5+5.8(=14.8)$ M1 for $\frac{10}{4} \times$ ' 14.8 ' (= $=37$) M1 (dep on at least M1) for ' 37 ' $-4-5.8+5$ A1 cao

PAPER: 5MB3H_01				
Question	Working	Answer	Mark	Notes
14	$\begin{aligned} & 4 x-5 y=33 \\ & 15 x+5 y=5 \\ & 19 x \quad=38 \\ & x=2, \quad 3 \times 2+y=1 \\ & y=-5 \\ & 12 x-15 y=99 \\ & 12 x+4 y=4 \\ & -19 y=95 \\ & y=-5, \quad 3 x-5=1 \\ & x=2 \end{aligned}$ OR $\begin{aligned} & 4 x-5(1-3 x)=33 \\ & x=2, \quad 3 \times 2+y=1 \\ & y=-5 \end{aligned}$	$x=2, y=-5$	3	M1 for a fully correct process to eliminate one variable (condone one arithmetical error) M1 (dep on M1) for a correct substitution of their value (of x or y) into one of the equations, or for starting again with a fully correct process to eliminate the second variable A1 for $x=2$ and $y=-5$ OR M1 for a correct rearrangement of one of the equations to make either x or y the subject and a correct method of substitution into the other equation. (condone one arithmetical error) M1 (dep on M1) for the substitution of their value (of x or y) into one of the equations. A1 for $x=2$ and $y=-5$ [Note: No marks for trial and improvement methods unless a fully correct solution is found]
15 (a)(i) (a)(ii) (b)		$3.202(17 \ldots .)$ $\begin{gathered} 3.20 \\ 1.17 \times 10^{10} \end{gathered}$	3 2	B2 for for 3.202(17.....) (B1 for 5.357 .. or $1.673 \ldots$ seen) B1 for 3.20 or ft from "(a)" [Note: 3.2 only gets B0] M1 for $2.34 \times 5 \times 10^{(5+4)}$ or $11.7 \times 10^{(5+4)}$ or $234000 \times 50000(=11700000000)$ A1 for 1.17×10^{10}

PAPER: 5MB3H_01

PAPER: 5MB3H_01

PAPER: 5MB3H_01

Question	Working	Answer	Mark	Notes		
20		$4.5,-0.75$ oe	3	$\begin{array}{l}\text { M2 for }(2 x-9)(4 x+3) \text { oe } \\ (\mathrm{M} 1 \text { for }(2 x \pm 9)(4 x \pm 3)) \text { oe }\end{array}$		
A1 for $4.5,-0.75$ oe					$]$	[SC: B1 for 4.5 and -0.75 oe, found by any other
:---						
method]						

Modifications to the mark scheme for Modified Large Print (MLP) papers.

Only mark scheme amendments are shown where the enlargement or modification of the paper requires a change in the mark scheme.
The following tolerances should be accepted on marking MLP papers, unless otherwise stated below:
Angles: $\pm 5^{\circ}$
Measurements of length: $\pm 5 \mathrm{~mm}$

PAPER: 5MB3H_01			
Question		Modification	Notes
Q1	(a) (b)	2 cm grid 2 cm grid. Triangle A to be rotated about the point $(0,1)$.	
Q6		July peak / off peak in a different format. Information the same.	Standard mark scheme
Q7		Dashed line to join Alford and Bancroft. A to B -7.5 cm .	Standard mark scheme
Q9		$11 / 2 \mathrm{~cm}$ grid.	Standard mark scheme
Q12		2 cm grid.	Standard mark scheme
Q13		Measurement arrows taken out.	Standard mark scheme
Q16		Model and diagram	Standard mark scheme

