

GCSE Applications of Mathematics (Linked Pair)

Higher Tier Unit 2 – Geometry and Measures Mark scheme

9370/2H November 2016

Version/Stage: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Copyright © 2016 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

М	Method marks are awarded for a correct method which could lead to a correct answer.
Mdep	A method mark dependent on a previous method mark being awarded.
Α	Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.
В	Marks awarded independent of method.
B dep	A mark that can only be awarded if a previous independent mark has been awarded.
Q	Marks awarded for quality of written communication.
ft	Follow through marks. Marks awarded for correct working following a mistake in an earlier step.
SC	Special case. Marks awarded for a common misinterpretation which has some mathematical worth.
oe	Or equivalent. Accept answers that are equivalent.
	eg accept 0.5 as well as $\frac{1}{2}$
[a, b]	Accept values between a and b inclusive.
25.3	Allow answers which begin 25.3 e.g. 25.3, 25.31, 25.378.
Use of brackets	It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a candidate has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the candidate. In cases where there is no doubt that the answer has come from incorrect working then the candidate should be penalised.

Questions which ask candidates to show working

Instructions on marking will be given but usually marks are not awarded to candidates who show no working.

Questions which do not ask candidates to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Candidates often copy values from a question incorrectly. If the examiner thinks that the candidate has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the candidate intended it to be a decimal point.

Q	Answer	Mark	Comments
1	× √	B2	B1 for each correct answer

2(a)	$1.2 \times 0.8 \times 2 + 1.2 \times 0.6 \times 2$ + 0.8 × 0.6 × 2 = 4.32 or 0.96 × 2 + 0.72 × 2 + 0.48 × 2 = 4.32 or 2(0.96 + 0.72 + 0.48) = 4.32	B2	B1 1.2 × 0.8 (× 2) or 0.96 or 1 or 1.2 × 0.6 (× 2) or 0.72 or 1.44 or	.92
	or 1.92 + 1.44 + 0.96 = 4.32 Addin 1.2 × 0.8 × 0.6	tional G	0.8 × 0.6 (× 2) or 0.48 or 0.96	B0

	Alternative method 1				
	4.32 × 3 × 8 or 103.68			M1	oe
	15 × 6.5 or 97.5			M1	
	103.68 and 97.5 and No			A1	
2(b)	Alternative method 2				
	4.32 × 3 or 12.96	4.32 × 8 or 34.56	4.32 ÷ 6.5 or 0.66	M1	
	their 12.96 their 34.56 their 0.66 × 8 ÷ 6.5 × 3 ÷ 6.5 × 3 × 8		M1dep	oe	
	[15.9, 16] an	d No		A1	

Mark scheme for Q2(b) continues on the next page

Q	Answer			Mark	Comments
	Alternative	method 3			
	4.32 × 3 or 12.96	4.32 × 8 or 34.56	4.32 ÷ 15 or 0.288	M1	
	their 12.96 × 8 ÷ 15	their 34.56 × 3 ÷ 15	their 0.288 × 3 × 8	M1dep	oe
	6.9 and No)		A1	
	Alternative method 4				
2(b)	4.32 × 3 or 12.96			M1	
2(0)	15 x 6.5 ÷ their 12.96 or 97.5 ÷ their 12.96			M1dep	
	7.5 and N	0		A1	
	Alternative	method 5			
	4.32 × 8 or	34.56		M1	
	15 × 6.5 ÷ their 34.56 or 97.5 ÷ their 34.56		M1dep		
	2.8 and N	lo		A1	

Q	Answer	Mark	Comments
	20 ÷ (1 + 3) or 20 ÷ 4 or 5	M1	red in 20 litres of light pink
	their 5 × 3 or 15	M1dep	white in 20 litres of light pink
3	their 15 x 2 or 30	M1dep	dep on M2 red needed for dark pink
	25	A1	

4(0)	Pam has $(80 + x)$ beads	D1	
4(a)	Ellie has $(44 - x)$ beads	Ы	

Q	Answer	Mark	Comments		
	_				
	Alternative method 1				
	80 + x = 3(44 - x)	B1ft	Correct equation or ft their (a) Missing brackets may be recovered		
	80 + x = 132 - 3x	M1	Expands their bracket, allow one error		
	x + 3x = 132 - 80	M1	Collects terms for their equation Allow one sign error their equation must have <i>x</i> on both sides		
4(b)	13	Q1ft	Strand (ii) Their equation solved correctly ft their (a) if M2 and no errors SC3 13 with no equation		
	Alternative method 2				
	3y + y = 80 + 44 or $4y = 124$	B1	oe correct equation y is the number of beads Ellie now has		
	(y =) 124 ÷ 4 or 31	M1			
	44 – their 31 or 3 × their 31 – 80 or 93 – 80	M1dep			
	13	Q1	Strand (ii) Correct answer with correct equation seen SC3 13 with no equation		

Additional Guidance on next page

Q	An	swer	Mark	Comments	
		Addi	tional Guidanc	e	_
	80 + x = 3(44 + x)				B1
	80 + x = 132 + 3x				M1
	80 - 132 = 3x - x				M1
	-26	(do not ft if solution	is negative)		Q0
	80 - x = 3(44 + x)				B1ft
	80 - x = 132 + 3x				M1
	80 - 132 = 3x + x				M1
4(b)	-13	(do not ft if solution	is negative)		Q0
4(b)					
	80 - x = 3(44 - x)				B1ft
	80 - x = 132 - 3x				M1
	3x - x = 132 - 80				M1

26

106

80 + x = 3(44 + x)

80 + x = 132 + 3x

80 + 132 = 3x - x

(1 error)

(do not ft if error(s) made)

Q1ft

B1ft

M1

M1

Q0

Q	Answer	Mark	Comments
	Any multiple of 60	M1	eg 60 or 120 or 180 Accept in a list of multiples
5	(Number of packs of patties =) their multiple ÷ 15 or 8 or (Number of packs of bread rolls =) their multiple ÷ 20 or 6	M1dep	Implied by £65.92 or £19.5(0)
	85.42	A1	SC2 Any multiple of 42.71 apart from 85.42 eg 42.71 or 128.13 or 170.84 or 213.55

Q	Answer	Mark	Comments		
	Alternative method 1	1			
	22 × 15 × 5 or 1650	M1			
	3.96 ÷ their 1650 or 0.0024 or their 1650 ÷ 3.96 or [416.6, 416.7]	M1dep	oe		
	$\pi \times 10 \times 10 \times 5$ or 500π or [1570, 1571]	M1			
	their [1570, 1571] × their 0.0024 or their [1570, 1571] ÷ their [416.6, 416.7] or [3.76, 3.771]	M1dep	oe dep on M3		
	their [3.76, 3.771] × 1.5(0) or [5.64, 5.66]		oe dep on M4		
	5.64 or 5.65 or 5.66	Q1	Strand (i) Must use correct money notation		
6	Alternative method 2				
	22 × 15 × 5 or 1650	M1			
	$\pi \times 10 \times 10 \times 5$ or 500π or [1570, 1571]	M1			
	their [1570, 1571] ÷ their 1650 or 0.95… or their 1650 ÷ their [1570, 1571] or [1.05, 1.051]	M1dep	dep on M2		
	their 0.95 × 3.96 or 3.96 ÷ their [1.05, 1.051] or [3.76, 3.771]	M1dep	oe dep on M3		
	their [3.76, 3.771] × 1.5(0) or [5.64, 5.66]	M1dep	oe dep on M4		
	5.64 or 5.65 or 5.66	Q1	Strand (i) Must use correct money notation		

Q Answer Mark Comments				
	Q	Answer	Mark	Comments

	Alternative method 3		
	22 × 15 × 5 or 1650	M1	
	3.96 ÷ their 1650 or 0.0024	M1dep	oe
	their 0.0024 × 1.5(0) or 0.0036	M1dep	oe dep on M2
	$\pi \times 10 \times 10 \times 5$ or 500π or [1570, 1571]	M1	
	their [1570, 1571] × their 0.0036 or [5.64, 5.66]	M1dep	oe dep on M4
	5.64 or 5.65 or 5.66	Q1	Strand (i) Must use correct money notation
6	Alternative method 4		
	22 × 15 or 330	M1	Using total surface area M0
	3.96 ÷ their 330 or 0.012 or their 330 ÷ 3.96 or 83.3…	M1dep	oe
	π × 10 × 10 or [314, 314.2]	M1	
	their [314, 314.2] × their 0.012 or their [314, 314.2] ÷ their 83.3 or [3.76, 3.771]	M1dep	oe dep on M3
	their [3.76, 3.771] × 1.5(0) or [5.64, 5.66]	M1dep	oe dep on M4
	5.64 or 5.65 or 5.66	Q1	Strand (i) Must use correct money notation

Q	Answer	Mark	Comments

	Alternative method 5			
	22 × 15 or 330	M1	Using total surface area M0	
	π × 10 × 10 or [314, 314.2]	M1		
	their [314, 314.2] ÷ their 330 or 0.95 or their 330 ÷ their [314, 314.2] or [1.05, 1.051]	M1dep	dep on M2	
	their 0.95 × 3.96 or 3.96 ÷ their [1.05, 1.051] or [3.76, 3.771]	M1dep	oe dep on M3	
	their [3.76, 3.771] × 1.5(0) or [5.64, 5.66]	M1dep	oe dep on M4	
	5.64 or 5.65 or 5.66	Q1	Strand (i) Must use correct money notation	
6	Alternative method 6			
	22 × 15 or 330	M1	Using total surface area M0	
	3.96 ÷ their 330 or 0.012	M1dep	oe	
	their 0.012 × 1.5(0) or 0.018	M1dep	oe dep on M2	
	$\pi \times 10 \times 10$ or 100π or [314, 314.2]	M1		
	their [314, 314.2] × their 0.018 or [5.64, 5.66]	M1dep	oe dep on M4	
	5.64 or 5.65 or 5.66	Q1	Strand (i) Must use correct money notation	
	Add	itional Gu	idance	
	Must consistently use volumes or consister	ntly use ba	se areas	
	For all method marks, may work in pence			

Q	Answer	Mark	Comments
7	Two correct trials [8.55, 8.65] which bracket 780 and 8.6 as final answer	B4	 B3 As B4 response but 8.6 not the final answer or two correct trials [8.5, 8.6] which bracket 780 and 8.6 as final answer B2 Two correct trials [8.1, 9] B1 One correct trial [8.1, 9]
	Addi	tional G	uidance
	Ignore incorrect trials		

Additional Guidance continues on the next page

I	Q	Answer	Mark	Comments

Many 'correct' trials are show	n in the tabl	e
	Trial	Acceptable values
	8.1	[662, 663]
	8.2	[685, 686]
	8.3	[709, 710]
	8.4	[733, 734]
	8.5	[758, 759]
	8.55	[771, 771.2314]
	8.56	[773, 774]
	8.57	[776, 776.313]
	8.58	[778,779]
	8.59	[781, 781.42]
	8.6	[783, 784]
	8.61	[786, 787]
	8.62	[789, 789.113]
	8.63	[791, 792]
	8.64	[794, 794.3]
	8.65	[796, 797]
	8.7	[809, 810]
	8.8	[836, 836.4]
	8.9	[863, 863.4]
	9	891

Q	Answer	Mark	Comments
	180 – 139	M1	
8(a)	41	A1	
	73.5 ÷ 42 or 1.75 or 42 ÷ 73.5 or 0.57	M1	
8(b)	$34 \times \text{their } 1.75$ or $34 \div \text{their } 0.57$ or 59.5 or $26 \times \text{their } 1.75$ or $26 \div \text{their } 0.57$ or 45.5 or $(42 + 34 + 26) \times \text{their } 1.75$ or $102 \times \text{their } 1.75$ or $(42 + 34 + 26) \div \text{their } 0.57$ or $102 \div \text{their } 0.57$	M1dep	
	178.5	A1	

	3.5 × 7 or 24.5	M1	
9(a)	their 24.5 + 2 + 2 or their 24.5 + 4 or 28.5	M1dep	Allow 2 tan 45 or $\frac{2}{\tan 45}$ for 2
	(a =) 24.5 and $(b =) 28.5$	A1	

9(k	2 × their 24.5 or 49 or 2 × their 28.5 or 57 or their 24.5 + their 28.5 or 53	M1	
	108	A1ft	ft their <i>a</i> and <i>b</i>

Q Answer Mark Comments

	Alternative method 1		
	Use of tan with a fraction using 200 and 157	M1	eg tan = 157 ÷ 200
	$\tan x = \frac{200}{157}$ or $\tan x = 1.27$	M1dep	oe eg 90 – $\tan^{-1} \frac{157}{200}$
	[51.8, 51.9] or 52	A1	
	Alternative method 2		
10	Use of sin with a fraction using 200 and $\sqrt{157^2 + 200^2}$ or use of cos with a fraction using 157 and $\sqrt{157^2 + 200^2}$	M1	$\sqrt{157^2 + 200^2} = \sqrt{64649}$ = 254.26 or 254.3
	$\sin x = \frac{200}{\sqrt{157^2 + 200^2}}$ or $\sin x = 0.78$ or 0.79 or $\cos x = \frac{157}{\sqrt{157^2 + 200^2}}$ or $\cos x = 0.61$ or 0.62	M1dep	Oe
	[51.8, 51.9] or 52	A1	

	2.9 × 2.9 × 2.9 or 24.3(89) or 24.39 or 24.4	M1	oe
11(a)	256 ÷ their 24.389 or 10.4()	M1	their 24.389 must be a volume
	10.5	A1	

11(b)	13.2 × 19.3 or 254 or 254.7(6) or 254.8 or 255	M1	
11(5)	254 or 254.7(6) or 254.8 or 255 and No	A1	oe decision eg silver is heavier

Q	Answer	Mark	Comments	
12(a)	$12 - 5 \sin (30 \times 12) = 12$ or $12 - 5 \sin 360 = 12$ or $\sin 360 = 0$	B1		
	Additional Guidance			
	12 – 0 (no other working)			B0

	Plots at least 6 points $(\pm \frac{1}{2}$ square)	M1	Points are implied by a graph passing through the points
12(b)	Smooth curve passing through all 13 points ($\pm \frac{1}{2}$ square)	A1	Points are implied by a curve passing through the points

12(c)	Line $d = 14$ drawn or <i>t</i> value(s) at $d = 14$ indicated or 6.8 (h) or 6 h 48 min or 11.2 (h) or 11 h 12 min or 4.4 (h)	M1	ft their graph at $d = 14 (\pm \frac{1}{2} \text{ square})$
	4 h 24 min	A1ft	ft their graph at $d = 14$ ($\pm \frac{1}{2}$ square) Must have two <i>t</i> values to ft

	Q	Answer	Mark	Comments
--	---	--------	------	----------

	$5^2 + 5^2$ or 25 + 25 or 50 or	M1	oe
	$2.5^2 + 2.5^2$ or $6.25 + 6.25$ or 12.5		
	$9^2 - (\frac{\sqrt{\text{their 50}}}{2})^2$ or		oe
13	81 – 12.5 or 68.5	M1dep	
15	or $VX^2 + (\frac{\sqrt{\text{their 50}}}{2})^2 = 9^2$	maop	
	or $VX^2 + 12.5 = 81$		
	$\sqrt{\text{their 68.5}}$ or [8.2, 8.3]	M1dep	oe
		innuop	dep on M2
	[13.2, 13.3]	A1	

	$\frac{75}{360}$ or $\frac{5}{24}$ or 0.208 or 0.21 or $\frac{360}{75}$ or $\frac{24}{5}$ or 4.8	M1	oe
14(a)	their $\frac{75}{360} \times 2 \times \pi \times 12$		oe
	or $2 \times \pi \times 12 \div$ their 4.8	M1dep	
	or 5π or [15.7, 15,71]		
	5π + 24 or [39.7, 39.71]	A1	

Q	Answer	Mark	Comments		
	Alternative method 1				
	$\sin \frac{75}{2} = \frac{x}{12}$ or $\sin 37.5 = \frac{x}{12}$	M1	oe <i>x</i> can be any letter		
	$2 \times 12 \times \sin \frac{75}{2}$ or $2 \times 12 \times \sin 37.5$	M1dep	oe		
	14.6()	A1			
	Alternative method 2				
	$\cos \frac{180-75}{2} = \frac{x}{12}$ or $\cos 52.5 = \frac{x}{12}$	M1	oe x can be any letter		
	$2 \times 12 \times \cos \frac{180 - 75}{2}$	M1dep	ое		
	or $2 \times 12 \times \cos 52.5$	A1			
14(b)	14.6() A1 Alternative method 3				
	$12^2 + 12^2 - 2 \times 12 \times 12 \times \cos 75$ or [213.4, 213.5]	M1	oe		
	$\sqrt{\text{their} [213.4, 213.5]}$	M1dep			
	14.6()	A1			
	Alternative method 4				
	$\frac{x}{\sin 75} = \frac{12}{\sin\left(\frac{180 - 75}{2}\right)}$	M1	oe x can be any letter		
	or $\frac{x}{\sin 75} = \frac{12}{\sin 52.5}$				
	$\frac{12}{\sin \text{ their 52.5}} \times \sin 75$	M1dep			
	14.6()	A1			

Q	Answer	Mark	Comments
	$\frac{1}{3} \times \pi \times 12 \times 12 \times 27$ or 1296π or [4069, 4072.032]	M1	oe
15(a)	$\frac{1}{3} \times \pi \times 20 \times 20 \times 45$ or 6000π or [18 840, 18 852]	M1	oe
	6000π – 1296π (= 4704π)	A1	

15(b)	39.6 ÷ 18 or 2.2 or 18 ÷ 39.6 or 0.45	M1	
	(their 2.2) ³ or 10.648 or (their 0.45…) ³ or 0.09…	M1dep	
	$4704\pi \times \text{their } 10.648 \ (\div 1000)$ or $4704\pi \div \text{their } 0.09 \ (\div 1000)$ or [157 276, 157 400] \ (\div 1000)	M1dep	dep on M2
	[157.276, 157.4] or 157	A1	

Q	Answer	Mark	Comments		
	Alternative method 1				
	Correct attempt at a distance using area	M1	eg (Suzy) 0.5 × 40 × 7 or 140 or (Suzy) 240 × 7 or 1680 or (Joe) 0.5 × 40 × 8 or 160 or (Joe) 220 × 8 or 1760		
	Correct attempt at a distance for Suzy and Joe for the same value of <i>t</i>	M1dep	eg ($t = 100$) (Suzy) 0.5 × 40 × 7 + 60 × 7 or 560 and (Joe) 0.5 × 40 × 8 + 40 × 8 or 480		
	Works out distance for 180 seconds for Suzy and Joe as 1120 (m)	A1			
16(a)	1120 is between 800 and 1200	Q1	Strand (ii) Correct explanation after 1120 (m) identified		
	Alternative method 2				
	$0.5 \times 40 \times 7 + 7(t - 40)$ or $0.5 \times 40 \times 8 + 8(t - 60)$	M1	oe <i>t</i> is the time when they have travelled the same distance		
	$0.5 \times 40 \times 7 + 7(t - 40) = 0.5 \times 40 \times 8 + 8(t - 60)$	M1dep	oe		
	<i>t</i> = 180	A1			
	1120 is between 800 and 1200	Q1	Strand (ii) Correct explanation after 1120 (m) identified		

Q	Answer	Mark	Comments		
	$\frac{7}{40}$ or 0.175	B1	oe		
16(b)	m/s ² or ms ⁻² or metres per second per second	B1	oe		
16(b)	Additional Guidance				
	Allow a mix of words and symbols				
	eg 0.175 metres per s ²			B1 B1	
	0.5 m/s per second			B0 B1	
	$ka = 4845$ or $ka^2 = 4941.9$	M1	oe		

17(a)	$ka = 4845$ or $ka^2 = 4941.9$	M1	oe
	<u>4941.9</u> 4845	N44 data	oe
	or $4845a = 4941.9$	M1dep	
	1.02	A1	ое

17(b)	4845 ÷ their 1.02		their 1.02 from (a)
	or 4941.9 ÷ (their 1.02) ²	M1	
	4750	A1ft	ft their 1.02
	Additional Guidance		
	ft answers to 2sf or better		