GCSE Mathematics

93702H Applications of Mathematics
Unit 2: Higher Tier
Mark scheme

93702H

November 2015

Version 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

[^0]
Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.
\(\left.$$
\begin{array}{ll}\text { M } & \begin{array}{l}\text { Method marks are awarded for a correct method which could } \\
\text { lead to a correct answer. }\end{array} \\
\text { A } & \begin{array}{l}\text { Accuracy marks are awarded when following on from a correct } \\
\text { method. It is not necessary to always see the method. This can } \\
\text { be implied. }\end{array} \\
\text { B } & \begin{array}{l}\text { Marks awarded independent of method. }\end{array} \\
\text { ft } & \begin{array}{l}\text { Follow through marks. Marks awarded for correct working } \\
\text { following a mistake in an earlier step. }\end{array} \\
\text { SC } & \begin{array}{l}\text { Special case. Marks awarded within the scheme for a common } \\
\text { misinterpretation which has some mathematical worth. }\end{array}
$$

A method mark dependent on a previous method mark being\end{array}\right\}\)| A mark that can only be awarded if a previous independent mark |
| :--- |
| has been awarded. |

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a candidate has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the candidate. In cases where there is no doubt that the answer has come from incorrect working then the candidate should be penalised.

Questions which ask candidates to show working

Instructions on marking will be given but usually marks are not awarded to candidates who show no working.

Questions which do not ask candidates to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Candidates often copy values from a question incorrectly. If the examiner thinks that the candidate has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

2(a)	40 cm	B1		
	Additional guidance			

Q	Answer	Mark	Comments

3(a)	Alternative method 1		
	$3 x+18=52$	M1	oe eg $x+x+x+2 \times 9=52$
	$3 x=52-18$ or $3 x=34$	M1	Isolates term in x for their equation of the form $a x+b=$ \qquad
	$11 \frac{1}{3}$ or 11.3(3 ..)	A1ft	oe ft from M1 M0 or M0 M1 Do not allow if their equation is of form $(1) x+b=\ldots \ldots .$
	Sets up and solves a linear equation	Q1ft	ft their equation Allow one error in the solution of their equation Do not allow if their equation is of form $\text { (1) } x+b=\ldots \ldots$
	Alternative method 2		
	52-18 or 34	M1	
	their $34 \div 3$	M1	
	$11 \frac{1}{3} \quad$ or $11.3(3 \ldots)$	A1ft	oe ft from M1 M0 or M0 M1
		Q0	

Q	Answer	Mark	Comments

3(a)	Additional guidance				
	Examples				
	$\begin{aligned} & 3 x+18=52 \\ & 3 x=70 \\ & x=26.7 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M0 } \\ & \text { A1ft Q1ft } \end{aligned}$	$\begin{array}{\|l} 2 x+18=52 \\ 2 x=34 \\ x=17 \end{array}$		M0 M1 A1ft Q1ft
	$\begin{aligned} & 3 x+18=52 \\ & 3 x=34 \\ & x=102 \end{aligned}$	M1 M1 AOft Q1ft	$\begin{aligned} & x+18=52 \\ & x=34 \end{aligned}$		M0 M1 A0ft Q0ft
	$\begin{aligned} & 3 x+9=52 \\ & 3 x=61 \\ & x=20.33 \end{aligned}$	$\begin{aligned} & \text { M0 } \\ & \text { M0 } \\ & \text { AOft Q1ft } \end{aligned}$	$\begin{aligned} & 52+18=70 \\ & 70 \div 3 \\ & 26.7 \end{aligned}$	M0 M1 A1ft Q0	$\begin{aligned} & \text { M0 } \\ & \text { M1 } \\ & \text { A1ft Q0 } \end{aligned}$

3(b)	Identifies height of trapezium or parallelogram as 8	B1	
	$\frac{1}{2} \times(9+5) \times$ their 8 or 56 or $(9+5) \times$ their 8 or 112 or $\frac{1}{2} \times(23+19) \times$ their 8 or 168	M1	
	224	A1	
	Additional guidance		

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

Alternative method 1

$\frac{75}{5000} \times 100$	M 1	oe
$1.5(\%)$	A1	oe
Machine Q makes lower proportion of damaged parts	Q1ft	oe Comparison using their 1.5 Must have gained M1

Alternative method 2

0.02×5000	M1	oe
100	A1	
Machine Q makes lower proportion of damaged parts	Q1ft	oe Comparison using their 100 Must have gained M1

Alternative method 3

Compares for the same number of parts eg for 1000 0.02×1000 or 20 and $75 \div 5$ or 15	M1	oe	
Works out both calculations correctly eg for 1000 20 and 15	A1		
Machine Q makes lower proportion of damaged parts	Q1ft	oemparison using their values Must have gained M1	
Additional guidance			

Q	Answer	Mark	Comments

5	18 (red) or 6 (blue)	B1	Necklace A
	$35 \div(3+2)$ or 7	M1	Necklace B
	their 7×3 or 21 (red) or their 7×2 or 14 (blue) or 39 (red) or 20 (blue)	M1	
	19	A1ft	ft B0 M2
	Additional guidance		

\mathbf{Q}	Answer	Mark	Comments

$\mathbf{6 (a)}$	$1 \rightarrow 45.1$	B1	
	$2 \rightarrow 30.4$	B1	

6(b)	Smooth decreasing curve passing through $\begin{aligned} & (0,50),(0.5,48.8),(1, \text { their } 45.1), \\ & (1.5,39.0),(2, \text { their } 30.4), \\ & (2.5,19.4),(3,5.9),(3.5,-10.0) \\ & \pm \frac{1}{2} \text { square } \end{aligned}$	B2ft	ft decreasing curve only for B2 B1ft 4 points plotted, $\pm \frac{1}{2}$ square ft their points
	Additional guidance		

$\mathbf{6 (c)}$	3.2	B1ft	ft their graph $\pm \frac{1}{2}$ square

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

7(a)	(B) C E A D or (B) E A C D or (B) A E C D or (B) $C A E D$	B2	Mark diagram if answer line blank B1 Arrangement where first three tiles (including B) fit, eg (B) C D
	Additional guidance		
	Repeated tile can score B1 max		

7(b)	angle $P A Q=55$ or angle $Q P B=136$ or angle $B A Q=110$ or angle $Q P C=44$	M1	
	angle $B A P=55$ or angle $B P A=55$	M1	This mark implies first M1
	angle $B P A=55$ and angle $B A P=55$ and Two equal angles	A1	oe statement
	Additional guidance		
	Angles may be seen on diagram for M marks		
	Must be a clear statement for A1		

Q	Answer	Mark	Comments

8(a)	Alternative method 1		
	$\begin{aligned} & 11 \times 30 \text { or } 330 \\ & \text { or } \\ & 5.5 \times 30 \text { or } 165 \\ & \text { or } \\ & 12 \times 30 \text { or } 360 \\ & \text { or } \\ & 6 \times 30 \text { or } 180 \end{aligned}$	M1	Allow $[10.8,11.2] \times 30$ or $[324,336]$ or $[5.3,5.7] \times 30$ or $[324,336]$ or $[11.8,12.2] \times 30$ or $[354,366]$ or $[5.8,6.2] \times 30$ or $[174,186]$
	$\pi \times$ their 165^{2} or $\text { [85 486.5, } 85 \text { 541] }$	M1	their 165 must be a radius $\text { eg } \pi \times 180^{2}$
	$\begin{aligned} & \text { their [85 486.5, } 85541] \times 40 \\ & \text { or } \\ & \text { [3 } 419460,3421640] \end{aligned}$	M1	Units must be compatible
	$\begin{aligned} & \text { their }[3419460,3421640] \div 1000 \\ & \div 1000 \text { or }[3.41946,3.42164] \end{aligned}$	M1	
	[3.41946, 3.42164] and 3.42	A1	[3.41946, 3.42164] must have > 3 s
		tiona	idance

Q	Answer	Mark	Comments

8(a)	Alternative method 2		
	$\begin{aligned} & 11 \times 30 \text { or } 330 \\ & \text { or } \\ & 5.5 \times 30 \text { or } 165 \\ & \text { or } \\ & 12 \times 30 \text { or } 360 \\ & \text { or } \\ & 6 \times 30 \text { or } 180 \end{aligned}$	M1	Allow $[10.8,11.2] \times 30 \text { or }[324,336]$ or $[5.3,5.7] \times 30 \text { or }[324,336]$ or [11.8, 12.2] $\times 30$ or $[354,366]$ or $[5.8,6.2] \times 30 \text { or }[174,186]$
	their $330 \div 100$ or $3.3(0)$ or their $165 \div 100$ or 1.65 or their $360 \div 100$ or $3.6(0)$ or their $180 \div 100$ or $1.8(0)$	M1	
	$\begin{aligned} & \pi \times \text { their } 1.65^{2} \\ & \text { or } \\ & {[8.54865,8.5541]} \end{aligned}$	M1	their 1.65 must be a radius
	their $[8.54865,8.5541] \times 40 \div 100$ or [3.41946, 3.42164]	M1	Units must be compatible
	[3.41946, 3.42164] and 3.42	A1	[3.41946, 3.42164] must have > 3 s
		tion	idance

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

8(a)	Alternative method 3		
	$\pi \times 5.5^{2}$ or [94.98, 95.05]	M1	Allow $\pi \times[5.3,5.7]^{2}$ or $[88.2,102.1]$
	their [94.98, 95.05] $\times 40$ or [3799.2, 3802]	M1	
	their [3799.2, 3802] $\times 30^{2}$ or [3 419 280, 3421 800]	M1	
	$\begin{aligned} & \text { their }[3419280,3421800] \div 1000 \\ & \div 1000 \text { or }[3.41928,3.4218] \end{aligned}$	M1	
	[3.41928, 3.4218] and [3.4, 3.422]	A1	[3.41928, 3.4218] must have > 3sf
	Additional guidance		

8(b)	$3.42 \times 1000 \div 750$ or 4.56 or 4.6	$\begin{aligned} & 750 \times 4 \text { or } 3000 \\ & \text { and } \\ & 750 \times 5 \text { or } 3750 \\ & \text { and } \\ & 3.42 \times 1000 \text { or } \\ & 3420 \end{aligned}$	M1	oe	
	5		A1		
	Additional guidance				
	Answer 5 with no incorrect working				M1 A1

\mathbf{Q}	Answer	Mark	Comments

9(a)	$8000 \times 1.25^{0}=8000$ or $1.25^{0}=1$	B1	Oe	
	Additional guidance			
	$8000 \times 1=8000$			B0

Alternative method 1

$756 \div 36$ or 21	M1	
their $21 \times 48 \div 36$ or 28 and their 28×48 or 1344	M1dep	Do not allow 1344 with no working or from $756+588$
$1344-756=588$	A1	Do not allow 1344 with no working or from $756+588$

Alternative method 2

10(a)	$36 \div 48 \text { or } 0.75$ or $48 \div 36 \text { or } 1.33(3 \ldots)$	M1	oe
	$756 \div(\text { their } 0.75)^{2}$ or $756 \times$ their $1.33(3 \ldots)^{2}$ or 1344	M1dep	oe Do not allow 1344 with no working or from $756+588$
	$1344-756=588$	A1	Do not allow 1344 with no working or from $756+588$
	Additional guidance		

Q	Answer	Mark	Comments
10(b)	588×4 or 2352	M1	
	their 2352×0.0105	M1	their 2352 may be 3024 or 5376
	[24.696, 24.7]	A1	Accept 25 if method seen SC2 $[31.75,31.8]$ or $[56.4,56.45]$
	Additional guidance		

$\mathbf{1 1 (a)}$	5 cm	B 1		
	Additional guidance			

11(b)	$\frac{17-12}{7-5}$	M1	oe	
	2.5 or $2 \frac{1}{2}$ or $\frac{5}{2}$	A1	oe	
	cm / s or $\mathrm{cm} \mathrm{s}^{-1}$	B1ft	oe eg centimetres per second SC1 5 cm in 2 seconds	
	Additional guidance			
	Allow other units if value also correct $0.025 \mathrm{~m} / \mathrm{s}$			M1 A1 B1

12(a)	$A E=A D$ radii (of circle centre A) and $A D=E D$ radii (of circle centre D) and $A E=A D=E D$	B2	B1 $A E=A D$ radii (of circle centre A) or $A D=E D$ radii (of circle centre D)
	Additional guidance		

Q	Answer	Mark	Comments
12(b)	$\pi \times 1.8 \times 2$ or 3.6π or [11.3, 11.3112]	M1	
	$\begin{aligned} & \frac{60}{360} \times \text { their }[11.3,11.3112] \text { or } \\ & {[1.88,1.89]} \end{aligned}$	M1	May multiply by 2 at this stage which leads to [3.76, 3.78]
	$2 \times$ their [1.88, 1.89] $+3 \times 1.8$	M1dep	dep on M1 M1 oe eg $[3.76,3.78]+3 \times 1.8$
	[9.16, 9.1704] or 9.2	A1	
	Additional guidance		

13(a)	Any correct attempt at an area during the first 40 seconds eg1 $\frac{1}{2} \times 15 \times 26$ eg2 $\frac{1}{2} \times 25 \times 26$ eg $3 \frac{1}{2} \times 40 \times 26$	M1	May be seen on the diagram
	$195 \text { or } 325$ or $(325-195=(=130$	A1	
	195 and 325 and Yes or 130 and Yes	A1	
	Additional guidance		

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

13(b)	Draws tangent at 65 seconds	B1	
	difference in velocities difference in times for their tangent with at least one component correct	M1	
	[0.5, 0.9]	A1ft	Must have drawn a tangent ft B0 M1 with a tangent drawn and both components correct
	Additional guidance		

Q	Answer	Mark	Comments

Alternative method 1

$\sin a=5.4 \div 5.5$	M 1	
$a=\sin ^{-1}(5.4 \div 5.5)$	M1dep	
$[79,79.1]$	A1	
$[79,79.1]$ and No	Q1ft	ft decision for their angle with M2 scored SC2 [56, 56.2] and No SC1 [56,56.2]

Alternative method 2

$\sin a=5.4 \div x$	M 1	$74 \leq a \leq 76$
$x=5.4 \div \sin a$	M 1	
$[5.56,5.57]$ or $[5.6,5.62]$	A1ft	ft their $74 \leq a \leq 76$ Use of $a=75 \rightarrow[5.59,5.6]$
$[5.56,5.57]$ and No or $[5.6,5.62] ~ a n d ~[5.56, ~ 5.57] ~ a n d ~ N o ~$	Q1	Use of $a=76$ only or Use of $a=74$ and 76 SC2 [56,56.2] and No SC1 [56,56.2]

Additional guidance

An angle of 74 gives the longest possible length. As this is too long they need to then try 76 to see if the shortest length is OK

As an angle of 76 gives the shortest possible length and this is too long, they don't need to go on to try 74

Candidates who work throughout with 76 can score 4 marks
Candidates who use 75 can score a maximum of M2 A1 Q0
$74 \leq a \leq 76$ means they can use any angle in this range for the first 3 marks.

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

Q	Answer	Mark	Comments
16	$\begin{aligned} & B C^{2}+7.5^{2}=12.5^{2} \\ & 12.5^{2}-7.5^{2} \end{aligned}$	M1	oe
	$\sqrt{12.5^{2}-7.5^{2}}$ or 10	M1dep	
	$\tan (A C B=) \frac{8.3}{\text { their } B C}$	M1dep	
	[39.69, 39.7]	A1	Accept 40 with correct working SC2 [29.6, 29.7]
	Additional guidance		

[^0]: Copyright © 2015 AQA and its licensors. All rights reserved.
 AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

