AQA Qualifications

GCSE Mathematics

Linked Pair - Applications of Mathematics
Paper Unit 2 Higher tier
Mark Scheme

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

M

A

B
ft

SC Special case. Marks awarded within the scheme for a common misinterpretation which has some mathematical worth.

M dep \quad A method mark dependent on a previous method mark being awarded.

B dep A mark that can only be awarded if a previous independent mark has been awarded.
oe
Or equivalent. Accept answers that are equivalent. eg, accept 0.5 as well as $\frac{1}{2}$
$[\boldsymbol{a}, \boldsymbol{b}] \quad$ Accept values between a and b inclusive.
$3.14 \ldots \quad$ Allow answers which begin 3.14 eg 3.14, 3.142, 3.149.

Use of brackets It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a candidate has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the candidate. In cases where there is no doubt that the answer has come from incorrect working then the candidate should be penalised.

Questions which ask candidates to show working

Instructions on marking will be given but usually marks are not awarded to candidates who show no working.

Questions which do not ask candidates to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Candidates often copy values from a question incorrectly. If the examiner thinks that the candidate has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

$\mathbf{1 (a)}$	Parallelogram or Kite	B1	

1(b)	$3.75^{2}+2^{2}$	M1	oe eg $14.0625+4$
	$\sqrt{3.75^{2}+2^{2}}$	M1dep	oe
	4.25	A1	

2(a)	Alternative method 1			
	$\begin{aligned} & 6 \times 50 \text { or } 300 \\ & \text { or } \\ & 4 \times 50 \text { or } 200 \\ & \text { or } \\ & 2 \times 50 \text { or } 100 \end{aligned}$		M1	attempt to convert one length on Helen's plan to actual length all lengths $\pm 2 \mathrm{~mm}$ allow combinations of lengths e.g. $20 \times 50 \text { or } 1000$
	their $300 \div 7.5$ or their $200 \div 5$ or their $100 \div 2.5$		M1dep	compares with equivalent length on Sidrah's plan all lengths $\pm 2 \mathrm{~mm}$ eg their $1000 \div 25$
	40		A1	
	Alternative method 2			
	$6 \div 7.5 \text { or } 0.8$ or $4 \div 5$ or 0.8 or $2 \div 2.5 \text { or } 0.8$	$\begin{aligned} & 7.5 \div 6 \text { or } 1.25 \\ & \text { or } \\ & 5 \div 4 \text { or } 1.25 \\ & \text { or } \\ & 2.5 \div 2 \text { or } 1.25 \end{aligned}$	M1	attempt to divide corresponding lengths from the two diagrams all lengths $\pm 2 \mathrm{~mm}$ allow combinations of lengths e.g. $20 \div 25 \text { or } 25 \div 20$
	$50 \times$ their 0.8	$50 \div$ their 1.25	M1dep	Use correctly with 50
	40		A1	

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

2(b)	Alternative method 1 (initial area attempt in 'scaled' m^{2})			
	$2 \times 2 \text { or } 4$ or 1×1 or 1 or $3 \times 2 \text { or } 6$	$\begin{aligned} & \hline \text { or } 3 \times 1 \text { or } 3 \\ & \text { or } \\ & 2 \times 1 \text { or } 2 \end{aligned}$	M1	converts to lengths in metres and attempts any appropriate area
	their 5×32.75		M1	oe area attempt must be complete e.g. their $(2 \times 2+1 \times 1)$ or their $(3 \times 2-1 \times 1)$ or their $(3 \times 1+2 \times 1)$
	163.75		A1	
	Alternative method 2 (initial area attempt in 'scaled' cm^{2})			
	$\begin{aligned} & 200 \times 200 \\ & \text { or } 40000 \\ & \text { or } \\ & 100 \times 100 \text { or } \\ & 10000 \\ & \text { or } \\ & 300 \times 200 \text { or } \\ & 60000 \end{aligned}$	$\begin{array}{ll} \text { or } & 300 \times 100 \text { or } \\ 30000 \\ \text { or } \\ 200 \times 100 \text { or } \\ 20000 \end{array}$	M1	converts to lengths in centimetres and attempts any appropriate area
	their 50000×0.003275		M1	oe area attempt must be complete
	163.75		A1	
	Alternative method 3 (initial attempt at 'actual' area of scale drawing in cm^{2})			
	$4 \times 4 \text { or } 16$ or 2×2 or 4 or $6 \times 4 \text { or } 24$	$\begin{aligned} & \text { or } \quad 6 \times 2 \text { or } 12 \\ & \text { or } \\ & 4 \times 2 \text { or } 8 \end{aligned}$	M1	attempt at any appropriate area
	their $20 \div 4 \times 32.75$ or their $20 \times 50^{2} \times 0.003275$		M1	oe uses area scale factor correctly area attempt must be complete
	163.75		A1	

\mathbf{Q}	Answer	Mark	Comments

3(a)	036	B 1	36 is $\mathrm{B0}$
3(b)	$180 \pm$ their 36 or their 144	M 1	
	216	A 1 ft	$\mathrm{ft} 360-$ their 144 or $180+$ their 36 SC 1144

4(a)	$2 \div 10(\times 60)$ or $0.2(\times 60)$	M 1	oe
	12	A 1	

Additional Guidance

Allow incorrect time notation for M1 e.g. $2 \div 0.10$

4(b)	10.55	B2	B1 Horizontal line from (10.10, 2) to $(10.40,2)$ or
Line with correct negative gradient			
from their (10.40, 2) to horizontal axis			
or			
$2 \div 8$ or $0.25(\mathrm{~h}) \quad$ or $\frac{1}{4}(\mathrm{~h})$			
or $15(\mathrm{~min})$			

Additional guidance

B1 Horizontal line from $(10.10,2)$ to $(10.40,2)$ may be implied by sloping line from $(10.40,2)$

Q	Answer	Mark	Comments

5	$220 \div 21.6$ or [10.1, 10.2] or 10 or $60 \div 14.4$ or [4.1, 4.2] or 4 or $55 \div 10.7$ or $[5.1,5.1402]$ or 5 or $60 \div 10.7$ or $[5.6,5.61]$ or 5 or $55 \div 14.4$ or $[3.8,3.82]$ or 3 or $220 \div 14.4$ or [15.2, 15.3] or 15 or $60 \div 21.6$ or [2.7, 2.8] or 2	M1	
	$220 \div 21.6$ or [10.1, 10.2] or 10 and $60 \div 14.4$ or [4.1, 4.2] or 4 and $55 \div 10.7$ or [5.1, 5.1402] or 5 or $220 \div 21.6$ or $[10,10.2]$ or 10 and $60 \div 10.7$ or $[5.6,5.61]$ or 5 and $55 \div 14.4$ or $[3.8,3.82]$ or 3	M1	
	their 10 and their 4 and their 5 or their 10 and their 4 and their 3	M1	Rounding down their three values
	their $10 \times$ their $4 \times$ their 5 or their $15 \times$ their $2 \times$ their 5 or 150	M1	Must be product of 3 numbers (may be non-integers)
	200	A1	$\begin{array}{ll} \text { SC2 } & 218 \\ \text { SC1 } & \text { [218.1, 218.141] } \end{array}$

Additional Guidance

2nd M1 implies the first M1
150 with no working implies M4 A0
SC1 and SC2 are for doing volume \div volume or not showing working

Q	Answer	Mark	Comments
6	$\begin{array}{lllll} 300 & 600 & 900 & \ldots . . . \\ 180 & 360 & 540 & \ldots . . \end{array}$ or Any common multiple identified	M1	Common multiples are multiples of 900 Implied if second M1 gained
	$3 \times 1.28(+) 5 \times 0.96$ or $3.84 \text { (+) 4.8(0) }$ or $6 \times 1.28(+) 10 \times 0.96$ or $7.68(+) 9.6(0) \text { or } 17.28$	M1	oe eg working in pence
	8.64	A1	
Additional Guidance			
864 is M1 M1			

7	Two pairs of equal intersecting arcs with centres P and Q Correct line joining $P Q$ and $S R$	B1 Q1	 Strand (ii) SC1 Correct line joining $P Q$ and $S R$ with no construction arcs

\mathbf{Q}	Answer	Mark	Comments

9	Two correct trials [1.735, 1.745] which bracket 8 and answer 1.74	B4	B3 Two correct trials [1.735, 1.745] which bracket 8 and answer not 1.74 or
		Two correct trials [1.74, 1.75] which bracket 8 and answer 1.74	
B2 Two correct trials $1.7<x \leq 1.8$			
B1 One correct trial $1.7<x \leq 2$			

Q	Additional Guidance		
9	x	V	Acceptable rang
	2	11.6	[11, 12]
	1.9	10.108	[10, 10.11]
	1.8	8.748	[8.7, 9]
	1.735	7.931942875	[7.9, 7.932]
	1.736	7.944102656	[7.9, 7.944103]
	1.737	7.956274653	[7.9, 7.96]
	1.738	7.968458872	[7.9, 7.97]
	1.739	7.980655319	[7.9, 7.981]
	1.74	7.992864	[7.9, 7.993]
		For B4 need one bold trial from above, one bold trial from below and answer 1.74	
	1.741	8.005084921	[8.0,8.01]
	1.742	8.017318088	[8.0, 8.02]
	1.743	8.029563507	[8.0,8.03]
	1.744	8.041821184	[8.0,8.042]
	1.745	8.054091125	[8.0,8.1]
	1.75	8.115625	[8.1,8.2]
	Ignore incorrect trials Give marks for correct trials if both correct and incorrect seen. Trials must be evaluated 'correctly' in the acceptable ranges shown Comments not needed.		
	For B4 There must be at least one 3dp trial in given interval. The evaluated trials must bracket 8 eg correct trials at $x=1.74$ and 1.745 and answer 1.74 For B3 Common answers will be as B4 with answer given to 3dp (1.741) or correct trials at $x=1.74$ and 1.75 and answer 1.74 If no 3dp trials can award B3 max For B2 and B1 If no 2 dp trials can award B 1 max		

\mathbf{Q}	Answer	Mark	Comments

Alternative method 1

(Protein in pack) $8.4 \times \frac{325}{100}$ or 27.3	M1	oe
their $27.3 \times \frac{3}{24}$ or [3.4, 3.413]	M1	oe
$\frac{\text { their [3.4, 3.413] }}{55}(\times 100)$	M1	$\frac{6}{100} \times 55$ or 3.3 and $\frac{7}{100} \times 55$ or 3.85
$[6.1,6.21] \%$ or $[0.61,0.621]$	A1	3.3 and 3.85 and $[3.4,3.413]$ Strand (ii) Correct method shown

Alternative method 2

(Grams eaten) $\frac{3}{24} \times 325 \text { or }[40.6,40.63]$	M1	oe
$\begin{aligned} & \frac{\text { their }[40.6,40.63]}{100} \times 8.4 \text { or } \\ & {[3.4,3.413]} \end{aligned}$	M1	oe
$\frac{\text { their }[3.4,3.413]}{55}(\times 100)$	M1	$\frac{6}{100} \times 55$ or 3.3 and $\frac{7}{100} \times 55 \text { or } 3.85$
$[6.1,6.21] \%$ or [0.61, 0.621]	A1	3.3 and 3.85 and [3.4, 3.413] Strand (ii) Correct method shown

AQA

Q	Answer	Mark	Comments
11	$x+4$ and $3(x+4)$	B1	oe
	$\begin{aligned} & x+\text { their }(x+4)+\text { their } 3(x+4) \\ & =92.65 \end{aligned}$	M1	oe linear equation Must be sum of 3 expressions $=92.65$
	$5 x+16=92.65$	A1	oe linear equation Must have collected all terms in x
	15.33	B1ft	ft their linear equation of form $a x+b=92.65$ SC3 15.33 without correct equation seen

Q	Additional Guidance
11	Likely error is use of $3 x$ for $3(x+4)$ $\begin{array}{ll} x+x+4+3 x=92.65 & \text { B0 M1 A0 } \\ x=17.73 & \text { B1ft } \end{array}$
	$\begin{array}{ll} x+x+4+3(x+4)=92.65 & \text { B1 M1 } \\ 5 x+4=92.65 & \text { A0 (error in expanding brackets) } \\ x=17.73 & \text { B1ft } \end{array}$
	$\begin{array}{ll} x+x+4+3(x+4)=92.65 & \text { B1 M1 } \\ x+x+4+3 x+7=92.65 & \\ 5 x+11=92.65 & \text { A0 (error in expanding brackets) } \\ x=16.33 & \text { B1ft } \end{array}$
	Correct solution by T \& I will be unlikely but if obtained award SC3

\mathbf{Q}	Answer	Mark	Comments

12	$30000+\frac{1}{4} \times 30000$ or 37500	M1	oe eg 30000×1.25
	their $37500+\frac{1}{4} \times$ their 37500 or 46875 and their $46875+\frac{1}{4} \times$ their 46875 or [58 593, 58594]	M1dep	oe eg their 37500×1.25^{2} or [58593, 58594]
	58600	A1	

\mathbf{Q}	Additional Guidance
$\mathbf{1 2}$	30000×1.25^{n} is M1 M0 for all positive integers n apart from $n=3$

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

13

Alternative method 1

$\pi \times(58 \div 2)^{2} \times 2$ or 1682π or $[5281.48,5284.844]$	M1	
their [5281.48, 5284.844] $\times 0.00852$ or $[44.99,45.03]$	M1	their [5281.4, 5284.2] must be a volume
their [44.99, 45.03] $\times 56000$ or $[2519 ~ 440, ~ 2521680] ~$	M1dep	dep on 2nd M1
$[2519,2522]$	A1	Accept 2500 if method seen

Alternative method 2

$\pi \times 29^{2} \times 2$ or 1682π or $[5281.48,5284.844]$	M1			
their [5281.48, 5284.844] $\times 56000$ or $[295762880,295951264]$	M1	their [5281.4, 5284.2] must be a volume		
their [295 762 880, 295 951 264] \times 0.00852 or	M1dep	dep on 2nd M1		
$[2519899,2521505]$			\quad A1	Accept 2500 if method seen
:---				
$[2519,2522]$				

Q	Additional Guidance
$\mathbf{1 3}$	2nd M mark only dependent on a volume calculation eg use of $r=58$ loses the first mark but can gain up to the next two marks $211358^{2} \times 2=21136.6$$\quad$ M0
$180.08 \times 560000=10084480$	M1dep
10084.48	A0

\mathbf{Q}	Answer	Mark	Comments

14	Alternative method 1		
	$15.2 \div 1.6$ or 9.5	M1	$1.6 \div 15.2$ or [0.105, 0.11]
	their 9.5×2.8	M1dep	$2.8 \div$ their [0.105, 0.11]
	26.6	A1	
	Alternative method 2		
	$2.8 \div 1.6$ or [1.75]	M1	$1.6 \div 2.8$ or [0.57, 0.57143]
	their 1.75×15.2	M1dep	$15.2 \div$ their [0.57, 0.57143]
	26.6	A1	
	Alternative method 3		
	$x=\tan ^{-1} \frac{2.8}{1.6}$ or $x=\sin ^{-1} \frac{2.8}{\sqrt{1.6^{2}+2.8^{2}}}$ or $x=\cos ^{-1} \frac{1.6}{\sqrt{1.6^{2}+2.8^{2}}}$ and $\tan x=\frac{h}{15.2}$	M1	$y=\tan ^{-1} \frac{1.6}{2.8} \text { or } y=\sin ^{-1} \frac{1.6}{\sqrt{1.6^{2}+2.8^{2}}}$ or $y=\cos ^{-1} \frac{2.8}{\sqrt{1.6^{2}+2.8^{2}}}$ and $\tan y=\frac{15.2}{\mathrm{~h}}$
	$15.2 \times \tan x$	M1dep	$\frac{15.2}{\tan y}$
	26.6	A1	

\mathbf{Q}	Additional Guidance
$\mathbf{1 4}$	Trigonometry methods \quad Can use any letters for x and y
	$x=[60.2,60.3] \quad y=[29.7,29.8]$
	No marks for only doing Pythagoras, must combine with trigonometry Apply equivalent approach if sine or cosine rules used

\mathbf{Q}	Answer	Mark	Comments

15(a)	B and C circled with no other letters circled	B 1	
15(b)	$\frac{1}{2} \times 30 \times V=270$	M 1	oe
	18	A 1	

16(a)	$\frac{36}{360} \times 2 \times \pi \times 20=4 \pi$	B2	oe eg1 $\frac{1}{10} \times 2 \times \pi \times 20=4 \pi$ eg2 $40 \pi \div 10=4 \pi$ B1 $\frac{36}{360}$ (oe fraction or decimal) or $2 \times \pi \times 20$ or $\pi \times 40$ or [125.6, 125.7]

\mathbf{Q}	Additional Guidance
$\mathbf{1 6 (a)}$	$\frac{36}{360} \times 2 \times \pi \times 20$ must be seen to equal 4π but if given as a different multiple
of π or not equated to 4π only award B1	

16(b)	their $\frac{36}{360} \times 2 \times \pi \times 30$ or 6π	M1	$\begin{gathered} \text { oe eg1 } \frac{1}{10} \times 2 \times \pi \times 30 \\ \text { eg2 } 60 \pi \div 10 \\ \text { eg3 }[18.8,18.9] \end{gathered}$
	$4 \pi+$ their $6 \pi+20+20+10+10$	M1dep	$\begin{aligned} & \text { oe } \\ & \text { eg }[12.56,12.6]+[18.8,18.9]+30+30 \end{aligned}$
	$10 \pi+60$	A1	SC2 [91.36, 91.5]

Q	Additional Guidance
$\mathbf{1 6 (b)}$	

\mathbf{Q}	Answer	Mark	Comments

17	$\cos 39^{\circ}=\frac{60}{P B}$ or $\sin 51^{\circ}=\frac{60}{P B}$	M 1	$\left(60 \tan 39^{\circ}\right)^{2}+60^{2}$ or [5960.7, 5960.701]
	$\frac{60}{\cos 39}$ or $\frac{60}{\sin 51}$	M1dep	$\sqrt{\text { their }[5960.7,5960.701]}$
	$[77.2,77.21]$	A1	
$[30.88,30.9]$ or 31	B1ft	ft their calculated distance $\div 2.5$ rounded to nearest integer or better	

18(a)	All points plotted correctly ($\left.\pm \frac{1}{2} \mathrm{sq}\right)$ and smooth curve through all points $\left(\pm \frac{1}{2} \mathrm{sq}\right)$	B2	B1 At least six points plotted correctly $\left(\pm \frac{1}{2} \mathrm{sq}\right)$

Q	Additional Guidance
$\mathbf{1 8 (a)}$	Curve passing through all correct points implies B2 even if points not explicitly plotted

18(b)	[22, 23] and [67,68]	B2ft	B1ft [22, 23] or [67, 68] or Line $d=7$ drawn or implied $f t ~ t h e i r ~ g r a p h ~$

Q	Additional Guidance
$\mathbf{1 8 (b)}$	B1ft Line $d=7$ implied by marks on their graph or on x-axis at appropriate points

\mathbf{Q}	Answer	Mark	Comments

19	$2 \times \pi \times 14 \times 19$ or 532π	M1	[1670.48, 1671.544]
	$\begin{aligned} & \pi \times 15 \times 39(-) \pi \times 5 \times 13 \\ & \text { or } 585 \pi(-) 65 \pi \text { or } 520 \pi \end{aligned}$	M1	$\begin{aligned} & {[1836.9,1838.1](-)[204.1,204.23]} \\ & \text { or }[1632.67,1634] \end{aligned}$
	532π and 520π	A1	[1670.48, 1671.544] or [1632.67, 1634]
	their 532π and their 520π and A	Q1ft	Correct ft decision based on their two surface areas Strand (iii) Must have gained both M marks and have full method for frustum

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

20(a) $\quad a^{0}=1$

Q	Additional Guidance
$\mathbf{2 0 (a)}$	$12000 a^{0}=12000$ or $12000 \times 1=12000$ is condoned

20(b)	$a^{3}=\frac{6144}{12000} \quad$ or $\quad(a=) \sqrt[3]{\frac{6144}{12000}}$	M 1	
	0.8	A 1	oe

20(c) Alternative method 1

$12000 \times 0.8^{8}=[2013,2013.3]$	B1	
and		
$12000 \div 6=2000$		
or $[2013,2013.3] \times 6=$ $[12078,12079.8]$		

Alternative method 2

$$
\begin{aligned}
& 0.8^{8}=[0.16 \cdot 0.17] \\
& \text { and } \\
& \frac{1}{6}=[0.16 \cdot 0.17]
\end{aligned}
$$

B1

21 \begin{tabular}{l|l|l|}

\hline | $4^{2}+6^{2}$ or $16+36$ or 52 |
| :--- |
| or |
| $2^{2}+3^{2}$ or $4+9$ or 13 | \& M1 \&

\hline | $\frac{1}{2} \times \sqrt{\text { their } 52}$ |
| :--- |
| or |
| $\sqrt{\text { their } 13}$ |
| or |
| $[3.6,3.61]$ | \& M1dep \&

\hline \& Correct attempt at $B D^{2}$ or $B X^{2}$

$\tan (E B D=) \frac{7}{\text { their }[3.6,3.61]}$ \& M1 \& oe

\hline \& A1 \& Accept 63 with correct attempt at $B D$ or $B X$

\hline
\end{tabular}

Copyright © 2014 AQA and its licensors. All rights reserved.
AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

