

GCSE Mathematics

93702H Applications of Mathematics Unit 2: Higher Tier Mark scheme

93702H

June 2015

Version V1 Final Mark Scheme

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Copyright © 2015 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

Μ	Method marks are awarded for a correct method which could lead to a correct answer.
Α	Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.
В	Marks awarded independent of method.
ft	Follow through marks. Marks awarded for correct working following a mistake in an earlier step.
SC	Special case. Marks awarded within the scheme for a common misinterpretation which has some mathematical worth.
M dep	A method mark dependent on a previous method mark being awarded.
Bdep	A mark that can only be awarded if a previous independent mark has been awarded.
oe	Or equivalent. Accept answers that are equivalent.
	eg, accept 0.5 as well as $\frac{1}{2}$
[a, b]	Accept values between a and b inclusive.
3.14	Allow answers which begin 3.14 eg 3.14, 3.142, 3.149.
Use of brackets	It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a candidate has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the candidate. In cases where there is no doubt that the answer has come from incorrect working then the candidate should be penalised.

Questions which ask candidates to show working

Instructions on marking will be given but usually marks are not awarded to candidates who show no working.

Questions which do not ask candidates to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Candidates often copy values from a question incorrectly. If the examiner thinks that the candidate has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Q	Answer	Mark	Comments		
	210 ÷ 6 × 4 or 210 ÷ 3 or 70 and 210 – their 70	M1	oe		
	140	A1			
	Additional guidance				
1	Using $\frac{2}{3}$ (or $\frac{4}{6}$) as a decimal				
	210 × 0.66 = 138.6 or 210 × 0.67 = 14	0.7		M1 A0	
	210 × 0.6666 = 139.986 or 210 × 0.666	67 = 140.0	07 with rounded answer 140	M1 A0	
	210 × 0.6666 with answer 140				
	210 × 0.6 = 126			M0 A0	

2(a)	5x = 2x + 12	B1	
------	--------------	----	--

	4	B2ft	B1ft $3x = 12$ oe ft their equation from (a) for B2 or B1	
	Additional guidance			
	If $5x = 2x + 6$ or $2x = 5x - 6$ in part (a)	→ 2 scores	B2 and $3x = 6$ oe scores B1	
	If $5x = x + 12$ in part (a) \rightarrow 3 scores B2 and $4x = 12$ oe scores B1			
2(b)	2(b) If 0 marks are scored in (a) The correct solution for any equation in (a) can score up to B2 If 1 mark is scored in (a) The correct solution for any equation other than $5x = 2x + 12$ in (a) can score B1 max Award B1ft for the correct rearrangement of the equation, separating x terms and numbers opposite sides of the equation, eg $5x - x = 12$ from $5x = x + 12$			
	Answers only			
	Answer 4 only always scores B2			
	Answer 2 only or answer 3 only scores	B2 only if	it is compatible with their answer to 2(a)	

Q	Ans	wer	Mark	Comments	
	Alternative metho	od 1			
	54		B1ft	 ft 9x + 18 evaluated correctly for their value of x in (b) Only ft their value of x in (b) 	
	their 54 and 50 an	d Yes	Q1ft	Only ft their value of x in (b) Strand (iii) Correct evaluation of $9x + 18$ with correct ft decision made SC1 their 48 and 50 and correct decision	
	Alternative metho	od 2			
	54		B1ft	ft $9x + 18$ evaluated correctly for their value of x in (b)	
				Only ft their value of x in (b)	
2(c)	their 10.8 and Yes or their 54 ÷ 5 = 10 and Yes	their 5.4 and Yes or their 54 ÷ 10 = 5 and Yes	Q1ft	Only ft their value of x in (b) Strand (iii) Correct evaluation of $9x + 18$ and correct evaluation of their $54 \div 5$ or their $54 \div 10$ with correct ft decision made SC1 their 9.6 and correct decision or their $48 \div 5 = 9$ and correct decision or their 4.8 and correct decision or their $48 \div 10 = 4$ and correct decision	
	Additional guidance				
	Alternative method	Alternative method 1 \rightarrow must see 50 as well as their 54 and correct ft decision for Q1ft			
	Decision may be ir	Decision may be implied but 54 > 50 does not imply yes			
	If the numbers of a	apples in bags C and	I D are equ	ual allow either $12x + 6$ or $6x + 30$ for $9x + 18$	
	their 48 is the corre	ect evaluation of $9x$ ·	+ 12 for the	eir x from (b)	

Q	Ans	swer	Mark	Comments
	0.5 × (1.8 + 1.4) × or 0.5 × (180 + 140) or digits 12		M1	oe
	1.2	12 000	A1	
3	m ²	cm ²	B1ft	ое
		A	dditional g	Juidance
	M1 Multiplication	n signs may be missi	ng	
	1.2 m ² or 12 000 cm ² M1 A1 B1 even if subsequent incorrect attempt to convert units eg1 12 000 cm ² (in working) \rightarrow 120 m ² (on answer line) M1 A1 B1 eg2 12 000 \rightarrow 120 m ² M1 A1 B0			

	3×9 has a units digit of 7 or $3 \times 9 = 27$	B1	oe	
	A	dditional g	juidance	
	Ignore further work if not contradictory Example			
4(a)	3 and 9 are both prime and $3 \times 9 = 27$			B1
	Allow equivalent answers Examples			
	13 × 19 = 247			B1
	27 ÷ 9 = 3 or 247 ÷ 13 = 19			B1

Q	Answer	Mark	Comments
	89 and 73	B2	B1 two prime numbers that multiply to give an integer with units digit 7 eg 1 83 and 79
			eg 2 31 and 37 eg 3 17 × 11 = 187
			eg 4 $43 \times 19 = 817$ or
4(b)			divides 6497 by a prime number other than 2 or 5
	A	dditional g	juidance
	The answer to a multiplication or division	on need no	t be shown
	Award B1 for one correct in a list of res	sponses	
	If 4(b) is blank, check 4(a) and award a	any availab	le marks

5(a)	[228, 232]	B1	
------	------------	----	--

Q	Answer	Mark	Comments		
	36 + 39 or 75	M1			
	their [9.8, 10.2] × 5 or [49, 51]	M1			
	[24, 26]	A1	SC1 16		
		Additional	guidance		
	2 nd M1				
	their [9.8, 10.2] × 5 or [49, 51] can				
5(b)	$CD \rightarrow [5.8, 6.2] \times 5$ or [29, 31]				
(d)C	5(b) $BC \text{ or } AD \rightarrow [6.4, 6.8] \times 5 \text{ or } [32, 34]$				
	$AB \rightarrow [8.8, 9.2] \times 5$ or [44, 46]				
	$BD \rightarrow [9.6, 10] \times 5$ or [48, 50]				
	If a length is measured incorrectly and the incorrect length is stated and linked then [9.8, 10.2] can be the given incorrect length The link could be on the diagram.				
	Example $AC = 10.5$ or AC drawn with 10.5 next to it on diagram				
	10.5 × 5 = 52.5 and 36 + 39 = 75 M1 M1 A0				
	75 – 52.5 = 22.5				

Q	Answer	Mark	Comments
6(a)	$\begin{array}{c} A \rightarrow 3\\ and\\ B \rightarrow 2\\ and\\ C \rightarrow 4\\ and\\ D \rightarrow 1\end{array}$	B2	B1 Any two or three correct
6(b)	(Graph) 3	B1	Allow A and 3
7(a)	Straight line joining (0, 40) and (100, 70) Allow $\pm \frac{1}{2}$ small square at (0, 40) and at (100, 70)	B2	B1 straight line with positive gradient passing through (0, 40) or straight line with positive gradient passing through (100, 70) or straight line with gradient 0.3 or coordinates of any two points on line identified on graph or in working
	Ad	dditional	guidance
	To check gradient use their end points B2 Line must span 0 cards to 100 car		e. Allow tolerance [0.28, 0.32].

Q	Answer	Mark	Comments		
	Alternative method 1				
	56 or their [54, 56]	M1	ft their graph for [54, 56] from 50 cards Allow $\pm \frac{1}{2}$ small square		
	[110, 112]	A1ft	ft 56 + their [54, 56] from 50 cards		
7/6)	Alternative method 2				
7(b)	56 or 40 + 0.3 × 50 or 55	M1	oe eg 40 + 3 × 5		
	111	A1			
	Additional guidance				
	Alternative method 1 their [54, 56] can be from a horizontal line, a line with negative gradient or a curve				

(150 cards cost) (Only) 133 (.3) (cards) (can be bought for (£)140 and No and No and No and No A1	Q	An	swer	Mark	Comments		
$\textbf{7(c)} \qquad \begin{array}{ c c c c } \hline \textbf{or} & \textbf{g} & 110 + 0.6 \times 50 & \textbf{or} & 110 + 6 \times 5 & \textbf{g} & \textbf{or} & 110 + 6 \times 5 & \textbf{g} & \textbf{g} & 110 + 6 \times 5 & \textbf{g} & \textbf{g} & \textbf{g} & \textbf{most} & \textbf{likely from evaluating } 0.6 \times 150 & \textbf{or} & 110 + 6 \times 5 & \textbf{g} & \textbf{g} & \textbf{most} & \textbf{likely from evaluating } 0.6 \times 150 & \textbf{g} & g$		Alternative method 1					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		or 50 + 6 × 15 or	(130 – 50) ÷ 0.6	M1	eg 110 + 0.6 × 50 or		
T(c)M1oe $110 + 80 - 50$ (from 100 cards \rightarrow (£)110 andM1oe $g 2 \times 95 - 50$ (from 75 cards \rightarrow (£)95 or $3 \times 80 - 2 \times 50$ (from 50 cards \rightarrow (£)95 or $3 \times 80 - 2 \times 50$ (from 50 cards \rightarrow (£) $(150 cards cost)$ (£)140 and NoA1Alternative method 3 $(100 (cards) \rightarrow (£)110)$ $110 (cards) \rightarrow (£)116$ $120 (cards) \rightarrow (£)128$ $(140 (cards) \rightarrow (£)128)$ 		(£)140	(cards) (can be bought for (£)130)	A1			
InteractionInteractionInteraction(from 100 cards \rightarrow (£)110eg 2 × 95 - 50 (from 75 cards \rightarrow (£)95andor50 cards \rightarrow (£)80) $3 \times 80 - 2 \times 50$ (from 50 cards \rightarrow (£)(150 cards cost) (£)140 and NoA1Alternative method 3(100 (cards) \rightarrow (£)110)M1110 (cards) \rightarrow (£)116120 (cards) \rightarrow (£)122130 (cards) \rightarrow (£)128(140 (cards) \rightarrow (£)134)(150 cards cost) (£)140 and Noor(150 cards cost) (£)140 and Noor(150 cards cost) (£)140 and Noor(140 cards cost) (£)134 and Noor(140 cards cost) (£)134 and NoA1or(140 cards cost) (£)134 and Noor(140 cards cost) (£)134 and No		Alternative method 2					
Alternative method 3 $(100 \text{ (cards)} \rightarrow (\pounds)110)$ M1oe $110 \text{ (cards)} \rightarrow (\pounds)116$ eg 130 (cards) $\rightarrow (\pounds)128$ $120 \text{ (cards)} \rightarrow (\pounds)122$ implies all previous values $130 \text{ (cards)} \rightarrow (\pounds)128$ implies all previous values $(140 \text{ (cards)} \rightarrow (\pounds)134)$ or $(150 \text{ cards cost)} (\pounds)140$ and Noor $0r$ $(150 \text{ cards cost)} (\pounds)134$ and No $(140 \text{ cards cost)} (\pounds)134$ and NoA1 $0r$ $130 \text{ cards} \rightarrow (\pounds)128$ and No and £2 $0r$ $130 \text{ cards} \rightarrow (\pounds)128$ and No and £2 $0r$ $130 \text{ cards} \rightarrow (\pounds)128$ and No and £2 $0r$ $130 \text{ cards} \rightarrow (\pounds)128$ and No and £2 $0r$ $130 \text{ cards} \rightarrow (\pounds)128$ and No and £2 $0r$	7(c)	(from 100 cards \rightarrow (£)110 and		M1	eg $2 \times 95 - 50$ (from 75 cards \rightarrow (£)95)		
$ \begin{array}{ c c c c c } \hline (100 \ (cards) \rightarrow (\pounds) 110) & M1 & oe \\ \hline 110 \ (cards) \rightarrow (\pounds) 116 & & eg \ 130 \ (cards) \rightarrow (\pounds) 128 & & implies \ all \ previous \ values \\ \hline 120 \ (cards) \rightarrow (\pounds) 122 & & implies \ all \ previous \ values \\ \hline 130 \ (cards) \rightarrow (\pounds) 128 & & & implies \ all \ previous \ values \\ \hline (140 \ (cards) \rightarrow (\pounds) 134) & & & & & \\ \hline (150 \ (cards) \rightarrow (\pounds) 140) & & & & & \\ \hline (150 \ cards \ cost) \ (\pounds) 140 \ and \ No & & & \\ \hline or & 130 \ cards \rightarrow (\pounds) 128 \ and \ No \ and \ \pounds 20 \ not \ enough \ (to \ buy \ 20 \ more \ cards) \\ \hline or & 130 \ cards \rightarrow (\pounds) 128 \ and \ No \ and \ \pounds 20 \ not \ enough \ (to \ buy \ 20 \ more \ cards) \\ \hline or & 130 \ cards \rightarrow (\pounds) 128 \ and \ No \ and \ \pounds 20 \ not \ enough \ (to \ buy \ 20 \ more \ cards) \\ \hline or & 130 \ cards \rightarrow (\pounds) 128 \ and \ No \ and \ \pounds 20 \ cards \ not \ enough \ (to \ buy \ 20 \ more \ cards) \\ \hline or & 130 \ cards \rightarrow (\pounds) 128 \ and \ No \ and \ \pounds 20 \ cards \ not \ enough \ (to \ buy \ 20 \ more \ cards) \\ \hline or & 130 \ cards \rightarrow (\pounds) 128 \ and \ No \ and \ \pounds 20 \ cards \ not \ enough \ (to \ buy \ 20 \ more \ cards) \\ \hline or & 130 \ cards \rightarrow (\pounds) 128 \ and \ No \ and \ \pounds 20 \ cards \ not \ enough \ (to \ buy \ 20 \ more \ cards) \\ \hline or & 130 \ cards \rightarrow (\pounds) 128 \ and \ No \ and \ \pounds 20 \ cards \ not \ enough \ (to \ buy \ 20 \ more \ cards) \\ \hline or & 130 \ cards \rightarrow (\pounds) 128 \ and \ No \ and \ \pounds 20 \ cards \ not \ enough \ (to \ buy \ 20 \ more \ cards) \\ \hline or & 130 \ cards \ anot \ buy \ 3 \ more \ cards \ oe \ \hline \end{array}$		(150 cards cost) (£)140 and No		A1			
$\begin{array}{c c} 110 \ (\text{cards}) \rightarrow (\pounds) 116 \\ 120 \ (\text{cards}) \rightarrow (\pounds) 122 \\ 130 \ (\text{cards}) \rightarrow (\pounds) 128 \\ (140 \ (\text{cards}) \rightarrow (\pounds) 128 \\ (140 \ (\text{cards}) \rightarrow (\pounds) 134) \\ (150 \ (\text{cards}) \rightarrow (\pounds) 140) \end{array} \qquad $		Alternative method 3					
or (140 cards cost) (£)134 and NoA1not enough (to buy 20 more cards) or 130 cards \rightarrow (£)128 and No and £2 can only buy 3 more cards oe		$110 \text{ (cards)} \rightarrow (\pounds)116$ $120 \text{ (cards)} \rightarrow (\pounds)122$ $130 \text{ (cards)} \rightarrow (\pounds)128$ $(140 \text{ (cards)} \rightarrow (\pounds)134)$		M1	eg 130 (cards) \rightarrow (£)128		
Additional guidance		or		A1	not enough (to buy 20 more cards) oe or 130 cards \rightarrow (£)128 and No and £2		
			Ac	ditional	guidance		
Decision (No) must be seen for A1		Decision (No) mu	st be seen for A1				

Q	Answer	Mark	Comments			
	30 ÷ 24 or 6 ÷ 24 or 15 (min) or 0.25 or 60 ÷ 24 × 30 1.25 (h) or 75 (min)	M1 A1	oe oe			
	1 h 15 min	B1ft	ft ft their time SC2 1 h 25 min			
	Additional guidance					
8	Do not award B1ft if their time is a whole number of hours if their time is in minutes < 60 min Examples					
	24 ÷ 30 = 0.8 = 80 min = 1 h 20 min					
	24 ÷ 30 = 0.8 = 1 h 20 min					
	24 ÷ 30 = 0.8 (0.8 × 60) = 48 min					

Q	Answer	Mark	Comments
		D 4	
	Arc, radius [4.8, 5.2] cm, centre <i>P</i> or	B1	
	arc, radius [7.3, 7.7] cm, centre <i>R</i>		
	Perpendicular bisector of PQ		Must see construction arcs and be within tolerance
9	Appropriate region shaded	B1ft	Only ft if their two arcs enclose a region and their line passes through the region
			Their line cannot be <i>P</i> Q

Alternative method 1	Alternative method 1					
270 ÷ (5 + 3 + 2) or 270 ÷ 10 or 27	M1	oe				
$5 \times$ their 27 × (0.)12 or 1620 and $3 \times$ their 27 × (0.)15 or 1215 and $2 \times$ their 27 × (0.)20 or 1080 or 3915	M1	Oe				
$5 \times 12 + 3 \times 15 + 2 \times 20$ or 60 + 45 + 40 or 145	M1	oe				
their 145 × 270 ÷ (5 + 3 + 2) or their 145 × 27 or 3915	M1	oe				
39.15	A1					
Additional guidance						
	270 ÷ (5 + 3 + 2) or 270 ÷ 10 or 27 5 × their 27 × (0.)12 or 1620 and 3 × their 27 × (0.)15 or 1215 and 2 × their 27 × (0.)20 or 1080 or 3915 39.15 Alternative method 2 5 × 12 + 3 × 15 + 2 × 20 or 60 + 45 + 40 or 145 their 145 × 270 ÷ (5 + 3 + 2) or their 145 × 27 or 3915	$270 \div (5 + 3 + 2)$ orM1 $270 \div 10$ or 27 M1 $5 \times$ their $27 \times (0.)12$ or 1620 M1and3 × their $27 \times (0.)15$ or 1215 and2 × their $27 \times (0.)20$ or 1080 or3915 39.15 A1Alternative method 2 $5 \times 12 + 3 \times 15 + 2 \times 20$ orM1 $60 + 45 + 40$ or 145 their $145 \times 270 \div (5 + 3 + 2)$ M1ortheir 145×27 or 3915 39.15 A1				

Q	Answer	Mark	Comments			
	200 ÷ 37 or $\frac{x}{200} = \frac{1}{37}$	M1	oe			
	5.4(05)	A1				
	5.41	B1ft				
	Ad	dditional g	guidance			
	Further work makes the method incorre	ect				
	eg1 $\frac{1}{2} \times \frac{1}{37} \times 200$ M0	$\frac{1}{2} \times \frac{1}{37} \times 200 M0$				
	eg2 200 ÷ 37 = 5.405 followed by 5.405 × 200 M0 A0					
11(a)	Allow $\frac{1}{37}$ to be 0.027(0) or 0.03 in working					
	eg 0.03 × 200 M1					
	A1ft Their 5.405 must have at least 4 sf					
	0.027 × 200 = 5.4 M1 A1 B0					
	B1ft Rounding to 3sf must be required and you may have to check their calculation eg $200 \div 0.027 = 7410$ M0 A0 B1ft $(200 \div 0.027 = 7407.4)$					
	B1ft Be careful when following through when their number has end digits 9					
	eg1199.99 to 3sf is 200 (do not acceeg28.50267 to 3sf is 8.50 (do not a					

Q	Answer	Mark	Comments		
	Alternative method 1				
11(b)	$\tan (a) = \frac{\text{their } 5.41}{200} \text{or}$ $\sin (a) = \frac{\text{their } 5.41}{\sqrt{\text{their } 5.41^2 + 200^2}} \text{or}$ $\cos (a) = \frac{\text{their } 200}{\sqrt{\text{their } 5.41^2 + 200^2}}$ $\tan^{-1} \frac{\text{their } 5.41}{200} \text{or}$ $\sin \frac{\text{their } 5.41}{\sqrt{\text{their } 5.41^2 + 200^2}} \text{or}$ $\cos^{-1} \frac{\text{their } 200}{\sqrt{\text{their } 5.41^2 + 200^2}}$	M1 M1dep	oe eg1 sin (a) = $\frac{\text{their } 5.41}{\sqrt{\text{their } 5.41^2 + 200^2}} \times \sin 90$ eg2 cos (a) = $\frac{\text{their } 5.41^2 + 200^2 + 200^2 - \text{their } 5.41^2}{2 \times \sqrt{\text{their } 5.41^2 + 200^2} \times 200}$ oe eg1 sin ⁻¹ $\frac{\text{their } 5.41^2 + 200^2}{\sqrt{\text{their } 5.41^2 + 200^2}} \times \sin 90$ eg2 cos ⁻¹ $\frac{\text{their } 5.41^2 + 200^2 + 200^2 - \text{their } 5.41^2}{2 \times \sqrt{\text{their } 5.41^2 + 200^2} \times 200}$		
		A1ft	M2 90 – $\tan^{-1} \frac{200}{\text{their 5.41}}$ oe ft their 5.41		
	[1.5, 1.55] A1ft ft their 5.41 Additional guidance				
	M1 must have tan(<i>a</i>), sin(<i>a</i>) or cos(<i>a</i>) a				
	A1ft Answers need to be rounded corr	ectly to at I	east 2 sf		
	Scoring 2nd M1 implies M1 M1				
	Note that 90 – 'other' angle scores M2 for complete method (M1 not possible)				
	Allow inv tan or shift tan for tan ⁻¹ etc				
	$\sqrt{5.41^2 + 200^2} \rightarrow [200.07, 200.1]$				

Q	Answer	Mark	Comments		
	Alternative method 2 $\tan (a) = \frac{1}{37} \text{or}$ $\sin (a) = \frac{1}{\sqrt{1^2 + 37^2}} \text{or}$ $\cos (a) = \frac{37}{\sqrt{1^2 + 37^2}}$ $\tan^{-1} \frac{1}{37} \text{or}$	M1 M1dep	oe eg1 sin (a) = $\frac{1}{\sqrt{1^2 + 37^2}} \times \sin 90$ eg2 cos (a) = $\frac{1^2 + 37^2 + 37^2 - 1^2}{2 \times \sqrt{1^2 + 37^2} \times 37}$ oe		
11(b)	$\sin^{-1} \frac{1}{\sqrt{1^2 + 37^2}} \text{or}$ $\cos^{-1} \frac{37}{\sqrt{1^2 + 37^2}}$ [1.5, 1.55]	A1	eg1 sin ⁻¹ $\frac{1}{\sqrt{1^2 + 37^2}} \times \sin 90$ eg2 cos ⁻¹ $\frac{1^2 + 37^2 + 37^2 - 1^2}{2 \times \sqrt{1^2 + 37^2} \times 37}$ M2 90 - tan ⁻¹ 37 oe		
	Additional guidance				
	M1 must have $tan(a)$, $sin(a)$ or $cos(a)$ as the subject M marks Allow $\frac{1}{37} = 0.027(0)$ or 0.03				
	Scoring 2nd M1 implies M1 M1				
Note that 90 – 'other' angle scores M2 for con Allow inv tan or shift tan for \tan^{-1} etc		tor comple	te method (IVI1 not possible)		
	$\sqrt{1^2 + 37^2} \rightarrow [37.01, 37.014]$				
	Allow $\frac{1}{37}$ to be 0.027(0) or 0.03 in w eg tan (a) = 0.02703 M1	orking			

Q	Answer	Mark	Comments
	$7 \rightarrow 6$	B2	B1 Any one correct value
	$8 \rightarrow [5.26, 5.3]$ or $7 - \sqrt{3}$		
12(2)	$9 \rightarrow 5$		
12(a)	$10 \rightarrow [5.26, 5.3]$ or $7 - \sqrt{3}$		
	$11 \rightarrow 6$		
	12 → 7		
	Plots their points and joins with	B1ft	$+\frac{1}{-}$ small square

	smooth curve		± - small square 2	
12(b)	Additional guidance			
	Allow curve from $t = 7$ to $t = 12$			
	If any of their values of d are > 11 awar	d B0		

	5(.00) (am) and 9(.00) (am)	B2	B1	5(.00) (am) or 9(.00) (am)	
	or			or	
	0500 and 0900			0500 or 0900	
				or	
				5(.00) pm and 9(.00) pm	
				or	
				1 and 5	
12(c)	Additional guidance				
	All times must be in correct positions to score marks Allow use of colons or decimal points				
	If their graph gives more than one time	2 or B1 for any one correct interval			
	5(.00) (am) and 9(.00) (am) in first and				
	5(.00) (pm) and 9(.00) (pm) in second	answer sp	ace s	cores B2	

Q	Answer	Mark	Comments		
	$\angle BCO = 90 - 15 \text{ or } 75$ or $\angle BOC = 75$	M1			
	$\angle OBC = (180 - 2 \times \text{their 75}) \text{ or } 30$	M1dep			
	$\angle OBA = (90 - \text{their } 30) \text{ or } 60$	M1dep	dep on M1 M1		
13	AB = BC and AB = OB $(180 - 60) \div 2 \ (= 60)$ and $\angle OAB = \angle AOB = \angle OBA \ (= 60)$	M1 A1	oe eg1 <i>ABCD</i> is a square so $AB = OB$ eg2 Single dash on diagram on <i>AB</i> and single dash not on <i>OC</i> oe Calculation and statement Must score M4 Some equivalences to statement $\angle OAB = \angle AOB = \angle OBA$ (= 60) are shown eg1 three equal angles (= 60)		
			eg2 all angles same (= 60) eg3 $\angle OAB = \angle AOB = 60$		
	Additional guidance				
	All M marks can be awarded from working on the diagram				
	A1 can only be awarded from working and statement in answer lines				
	If first mark not scored but $\angle OBC = 30$ and/or $\angle OBA = 60$ award M0 M0 M0				
	4th mark could be the only mark gained (eg if no angles attempted)				
	Ignore any reasons given				

Q	Answ	er	Mark	Comments		
	$\pi \times 2.5^2 \times 2$ or 12.5 or [39.2, 39.3]	5π	M1	oe		
	$3 \div 5 \text{ or } \frac{3}{5} \text{ or } 0.6$ or $5 \div 3 \text{ or } \frac{5}{3} \text{ or } 1.6$	6 or 1.67	M1	oe 1.2 implies 0.6 or 1.66		
	$\pi \times 1.5^2 \times \text{their } 0.6 \times 1.5^2 \times \text{their } 0.6 \times 1.5^2 \times 1.5^2$ or their [39.2, 39.3] or $\pi \times 1.5^2 \div \text{their } 1$ or their [39.2, 39.3] or 2.7 π or [8.4, 8.5]	× their 0.6 ³ .66 × 2 ÷ their 1.66 ³	M1	oe Must use their scale factor If multiplying, scale factor must be < 1 If dividing, scale factor must be > 1		
14	their volume \times 2.6		M1	eg [39.2, 39.3] × 2.6 or [8.4, 8.5] × 2.6 or $(12.5\pi + 2.7\pi) \times 2.6$		
	[123.7, 124.3] or -	88 25 π	A1	ое		
	Additional guidance					
	Use of diameter(s) in	stead of radii s	hould be pena	alised once, the first time it occurs		
	eg1 $\pi \times 5^2 \times 2$ 0.6	M0 M1				
	$\begin{array}{c c} \pi \times 3^2 \times 0.6 \times \\ eg2 & \pi \times 2.5^2 \times 2 \\ & 0.6 \end{array}$	2 M1 (n M1 M1	nay subseque	ently score M1 A0 or M0 A0)		
	$\pi \times 3^2 \times 0.6 \times$		nay subseque	ntly score M1 A0 or M0 A0)		
	(Additional guidance continues on next page)					

4th M1their volume may be a single volume or from a sum of two volumes4th M1their volume cannot be an area or a length and must include π Do not take their stated unitseg cm ³ as indicating a volumeeg $\pi \times 2.5 \times 2 = 5\pi$ cm ³ M0 $\pi \times 1.5 \times 1.2 = 1.8\pi$ cm ³ M1 M0		Additional guidance
14 Do not take their stated units eg cm ³ as indicating a volume eg $\pi \times 2.5 \times 2 = 5\pi$ cm ³ M0		4th M1 their volume may be a single volume or from a sum of two volumes
14 eg $\pi \times 2.5 \times 2 = 5\pi \text{ cm}^3$ M0		C C
$\pi \times 1.5 \times 1.2 = 1.8\pi \text{ cm}^{\circ}$ M1 M0	14	eg $\pi \times 2.5 \times 2 = 5\pi \text{ cm}^3$ MO
$6.8\pi \text{ cm}^3 \times 2.6 = 17.68\pi \text{ MO AO}$		

Q	Answer	Mark	Comments
15	(Monday) 35×200 or 7000 or $\frac{1}{2} \times (200 + 250) \times 25$ or 5625 or 60×200 or 12 000 or $\frac{1}{2} \times 25 \times 50$ or 625 or (Wednesday) 20×250 or 5000 or $\frac{1}{2} \times (250 + 150) \times 40$ or 8000 or $\frac{1}{2} \times 40 \times 100$ or 2000 or 40×150 or 6000 (Monday) $35 \times 200 + \frac{1}{2} \times (200 + 250) \times 25$ or $60 \times 200 + \frac{1}{2} \times 25 \times 50$ or (Wednesday) $20 \times 250 + \frac{1}{2} \times (250 + 150) \times 40$ or $20 \times 250 + \frac{1}{2} \times 40 \times 100 + 40 \times 150$	M1 M1	oe Correct attempt at any one area section from either graph. May be seen on the graph Allow 1 small square = 10 or 5 by 5 square = 250 oe oe Fully correct attempt for one graph
	(Monday) 12 625 or (Wednesday) 13 000	A1	oe eg 12.625 or 13
	12 625 and 13 000 and Wednesday	A1	oe eg 12.625 and 13 and Wednesday
	A	dditional g	guidance
	Allow Wednesday to be any day other t	than Mond	ay

Q	Answer	Mark	Comments		
	$\frac{45}{360}$ or division by 8	M1	oe		
	their $\frac{45}{360}$ (×) π (×) 95 (×) 95	M1	ое		
	[3542, 3545] or $\frac{9025}{8}\pi$	A1	ое		
16(a)	Additional guidance				
	π (×) 95 (×) 95 = 9025 π = [28 338.5, 28 357]				
	Allow working in centimetres				
	$\frac{45}{360} \times \pi \times 9.5 \times 9.5 \qquad \text{M1 M1}$				
	Allow [35.42, 35.45] cm ² for A1 if cm ² s	stated			

Q	Answer	Mark	Comments
	1		
16(b)	95 (×) cos 45 = 67.17 or 67.18 or 95 (×) sin 45 = 67.17 or 67.18 or $\sqrt{\frac{95^2}{2}} = 67.17$ or 67.18 or 95 ÷ 2 cos 45 = 67.17 or 67.18	B2	oe B1 $\cos 45 = \frac{OC}{95}$ or $95 (\times) \cos 45$ or $\sin 45 = \frac{OC}{95}$ or $95 (\times) \sin 45$ or $\frac{OC}{\sin 45} = \frac{95}{\sin 90}$ oe or $\frac{95^2}{2}$ or $95 \div 2 \cos 45$ or $2 (\times) OC (\times) 95 (\times) \cos 45 = 95^2$ or 67.17 or $67.18or\sqrt{95^2 - 67.2^2} = 67.15or\sqrt{67.2^2 + 67.2^2} = 95.03 or 95.04$
	A	dditional g	guidance
	B1 Allow any letter for OC		
	$\sqrt{95^2 - 67.2^2} = 67.2$ is B0 unless 67.	15 also s	seen
	$\sqrt{67.2^2 + 67.2^2} = 95$ is B0 unless 95.0	03 or 95	.04 also seen
	If B1 for 67.17 or 67.18 is scored, there	look back	to (a) and award B2 if a B2 response is seen
	Ignore further work after B2 response	eg using F	Pythagoras to check the answer

Q	Answer	Mark	Comments	
	$\frac{1}{2} (\times) [67.1, 67.2] (\times) [67.1, 67.2] \text{ or}$ $\frac{1}{2} (\times) [67.1, 67.2] (\times) 95 (\times) \sin 45$ or [2251, 2258]	M1		
	(their [3542, 3545] – their [2251, 2258]) × 2.5	M1	(their (a) – their triangle area) \times 2.5	
16(c)	[3210, 3235]	A1ft	Only ft their (a)	
	Additional guidance			
	1st M1 Allow dimensions to be different in $\frac{1}{2}$ base × height as long as both are [67.1, 67.2] eg $\frac{1}{2}$ (×) 67.1 (×) 67.2 M1			
	2nd M1 Subtraction must be in the order shown			
	A1ft Allow answer rounded to at least 3sf			

Q	Answer	Mark	Comments	
	$28^{2} - (\frac{24}{2})^{2} \text{ or } 784 - 144 \text{ or } 640$ or $28^{2} = OX^{2} + (\frac{24}{2})^{2} \text{ or}$ $784 = OX^{2} + 144$	M1	oe Allow any letter for <i>OX</i>	
	$\sqrt{28^2 - (\frac{24}{2})^2}$ or $\sqrt{784 - 144}$	M1dep	M2 28 sin(cos ⁻¹ $\frac{12}{28}$) or 12 tan(cos ⁻¹ $\frac{12}{28}$)	
			or 28 cos(sin ⁻¹ $\frac{12}{28}$) or 12 ÷ tan(sin ⁻¹ $\frac{12}{28}$)	
	[25.298, 25.3] or $\sqrt{640}$ or $8\sqrt{10}$	A1	ое	
17			SC1 14.4(2) or $\sqrt{208}$ or $4\sqrt{13}$ oe	
17	Additional guidance			
	$\sqrt{640}$ or $8\sqrt{10}$ scores M1 M1 A1 even if subsequent attempt to evaluate seen on answer line			
	M2 (M1 not possible)			
	Allow $\cos^{-1}\frac{12}{28}$ to be 64.6 and $\sin^{-1}\frac{12}{28}$ to be [25.37, 25.4]			
	Other angles, eg 64, must have some	correct me	ethod shown	
	eg1 28 sin 64.6 M2			
	eg2 cos $x = \frac{12}{28}$			
	<i>x</i> = 64			
	28 sin 64 M2			
	eg3 28 sin 64 M0			

18(a)	120 <i>x</i> ²	B1	
18(b)	40 <i>x</i> ³	B1	

Q	Answer	Mark	Comments		
	Alternative method 1				
	their (b) ÷ their (a) linked with 0.5	M1	oe Division in this order only		
	1.5	A1ft	ft their (b) and their (a)		
			Allow $x \le 1.5$		
	Alternative method 2	-1			
	120 ÷ 40 × 0.5	M1	ое		
	1.5	A1	Allow $x \le 1.5$		
	Alternative method 3				
	60 ÷ 40	M1	oe		
	1.5	A1	Allow $x \le 1.5$		
	Additional guidance				
	Alt 1 A1ft answers to at least 2 sf				
18(c)	Alt 1 M1 Link may use = or an inequality symbol				
	Alt 1 their (a) is $120x^2$ and their (b) is $24x^3$				
	$24x^3 \div 120x^2 = 0.5$ M1				
	$0.5 \times 5 = 2.5$ A1ft				
	Alt 1 their (a) is $120x$ and their (b) is $40x^3$				
	$\frac{40x^3}{120x} < 0.5$ M1				
	$x^2 < 1.5$				
	x = 1.2 A1ft				
	Alt 1 If degree of their (a) \geq degree of their (b) can score a maximum of M1 A0				
	Alt 1 T & I scores 2 or 0				
	Alt 2 oe for M1 $\frac{40}{120} = \frac{1}{3}$ and 0.5×3				
	Alt 3 60 ÷ 120 may also be seen but does not score unless 60 ÷ 40 also seen				

Q	Answer	Mark	Comments		
	Alternative method 1				
	Draws tangent at 9.20	M1			
	Attempt at vertical ÷ horizontal for their tangent	M1	At least one component must be correct $\pm \frac{1}{2}$ small square		
	[1.6, 2.4] or [96, 144]	A1	Ignore any units seen		
19	their $[1.6, 2.4] \times 60 \div [1.6, 1.61]$ or their $[1.6, 2.4] \times 60 \times [0.62, 0.63]$ or their $[96, 144] \div [1.6, 1.61]$ or their $[96, 144] \times [0.62, 0.63]$ [59.5, 91] and correct decision	M1 Q1ft	Correct method to convert their speed from km/min or km/h to miles per h oe Strand (iii) ft if tangent drawn and 2nd and 3rd		
	Additional guidance				
	2nd M1If only one component is correct a triangle must be seenA correct component is a correct value or a correct $y_2 - y_1$ or a correct $x_2 - x_1$ 2nd M1Can be implied by the 1st M1 and a correct answer for A1No tangent attempted can score a maximum of M0 M0 A0 M1 Q0				

Q	Answer	Mark	Comments		
	Alternative method 2				
	Draws tangent at 9.20	M1			
	Attempt at vertical ÷ horizontal for their tangent	M1	At least one component must be correct $\pm \frac{1}{2}$ small square		
	[1.6, 2.4] or [96, 144]	A1	Ignore any units seen		
	70 × [1.6, 1.61] ÷ 60 or	M1	Correct method to convert 70 miles per h to km/min or km/h		
19	70 ÷ [0.62, 0.63] ÷ 60 or [1.8, 1.9] or 70 × [1.6, 1.61] or 70 ÷ [0.62, 0.63] or [111, 113]		oe		
	their [1.6, 2.4] and [1.8, 1.9] and correct decision or their [96, 144] and [111, 113] and correct decision	Q1ft	Strand (iii) ft if tangent drawn and 2nd and 3rd M marks gained		
	Additional guidance				
	2nd M1 If only one component is correct a triangle must be seen A correct component is a correct value or a correct $y_2 - y_1$ or a correct $x_2 - x_1$				
	2nd M1 Can be implied by the 1st M1 and a correct answer for A1				
	No tangent attempted can score a max	No tangent attempted can score a maximum of M0 M0 A0 M1 Q0			
	Q1ft Must be comparing like for like	eg two sp	eeds both in km/h		

Q	Answer	Mark	Comments		
	Alternative method 3				
	Draws tangent at 9.20	M1			
	their vertical ÷ [1.6, 1.61] or their vertical × [0.62, 0.63]	M1	Correct method to convert their vertical (distance in km) to miles oe		
	Attempt at vertical ÷ horizontal for their tangent	M1	At least one component must be correct $\pm \frac{1}{2}$ small square		
19	[59.5, 91]	A1	Ignore any units seen		
	their [59.5, 91] and correct decision	Q1ft	Strand (iii) ft if tangent drawn and 2nd and 3rd M marks gained		
	Additional guidance				
	3rd M1 If only one component is correct a triangle must be seen				
	A correct component is a correct value or a correct $y_2 - y_1$ or a correct $x_2 - x_1$				
	3rd M1 Can be implied by the 1st M1 and a correct answer for A1				
	No tangent attempted can score a maximum of M0 M1 M0 A0 Q0				