GCSE
 Mathematics

93702H Applications of Mathematics
Unit 2: Higher Tier
Mark scheme

93702H

June 2015

Version V1 Final Mark Scheme

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

M Method marks are awarded for a correct method which could lead to a correct answer.

A

B
ft

SC Special case. Marks awarded within the scheme for a common misinterpretation which has some mathematical worth.

Mdep A method mark dependent on a previous method mark being awarded.

Bdep A mark that can only be awarded if a previous independent mark has been awarded.
oe
Or equivalent. Accept answers that are equivalent. eg, accept 0.5 as well as $\frac{1}{2}$
$[a, b] \quad$ Accept values between a and b inclusive.
$3.14 \ldots \quad$ Allow answers which begin 3.14 eg 3.14, 3.142, 3.149.

Use of brackets It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a candidate has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the candidate. In cases where there is no doubt that the answer has come from incorrect working then the candidate should be penalised.

Questions which ask candidates to show working

Instructions on marking will be given but usually marks are not awarded to candidates who show no working.

Questions which do not ask candidates to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Candidates often copy values from a question incorrectly. If the examiner thinks that the candidate has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Q	Answer	Mark	Comments

Alternative method 1

54	B1ft	$\mathrm{ft} \quad$$9 x+18$ evaluated correctly for their value of x in (b) Only ft their value of x in (b) their 54 and 50 and Yes Q1ftOnly ft their value of x in (b) Strand (iii) Correct evaluation of $9 x+18$ with correct ft decision made SC1 their 48 and 50 and correct decision

Alternative method 2

| 54 | B1ft | ft$9 x+18$ evaluated correctly for
 their value of x in (b)
 Only ft their value of x in (b)
 their 10.8 and Yes
 or
 their $54 \div 5=10$
 and Yes
 their 5.4 and Yes
 or
 their $54 \div 10=5$
 and Yes
 Q1ftOnly ft their value of x in (b)
 Strand (iii) Correct evaluation of $9 x+18$
 and correct evaluation of their $54 \div 5$ or
 their $54 \div 10$ with correct ft decision made
 SC1 their 9.6 and correct decision
 or
 their $48 \div 5=9$ and correct decision
 or
 their 4.8 and correct decision
 or
 their $48 \div 10=4$ and correct decision |
| :--- | :--- | :--- | :--- |
| Alternative method $1 \rightarrow$ must see 50 as well as their 54 and correct $f t$ decision for Q1ft | | |

4(a)	3×9 has a units digit of 7 or $3 \times 9=27$	B1	oe	
	Additional guidance			
	Ignore further work if not contradictory Example			
	3 and 9 are both prime and $3 \times 9=27$			B1
	Allow equivalent answers Examples			
	$13 \times 19=247$			B1
	$27 \div 9=3$ or $247 \div 13=19$			B1

\mathbf{Q}	Answer	Mark	Comments

5(a)	$[228,232]$	B1	

\mathbf{Q}	Answer	Mark	Comments

Q	Answer	Mark	Comments		
6(a) A \rightarrow 3 and B $\rightarrow 2$ and C $\rightarrow 4$ and D $\rightarrow 1$ B2 B1 Any two or three correct					(
:---					

6(b)	(Graph) 3	B1	Allow A and 3

7(a)	Straight line joining (0,40) and (100, 70) Allow $\pm \frac{1}{2}$ small square at $(0,40)$ and at $(100,70)$	B2	B1 straight line with positive gradient passing through $(0,40)$ or straight line with positive gradient passing through $(100,70)$ or straight line with gradient 0.3 or coordinates of any two points on line identified on graph or in working
	Additional guidance		
	To check gradient use their end points of their line. Allow tolerance $[0.28,0.32]$. B2 Line must span 0 cards to 100 cards		

\mathbf{Q}	Answer	Mark	Comments

Alternative method 1

56 or their $[54,56]$	M1	ft their graph for [54, 56] from 50 cards Allow $\pm \frac{1}{2}$ small square
$[110,112]$	A1ft	ft $56+$ their $[54,56]$ from 50 cards

Alternative method 2
7(b)

56 or $40+0.3 \times 50$ or 55	M1	oe eg $40+3 \times 5$
111	A1	
Additional guidance		
Alternative method 1 their $[54,56]$ can be from a horizontal line, a line with negative gradient or a curve		

\mathbf{Q}	Answer	Mark	Comments

Alternative method 1

$50+0.6 \times 150$ or $50+6 \times 15$ or 90	$(130-50) \div 0.6$	M1	oe eg $110+0.6 \times 50$ or
$(150$ cards cost) $(£) 140$ and No	(Only) 133 (.3 ...) (cards) (can be bought for (£)130) and No	A1	$110+6 \times 5$ 90 most likely from evaluating 0.6×150 oe

Alternative method 2

$\begin{aligned} & 110+80-50 \\ & \text { (from } 100 \text { cards } \rightarrow(£) 110 \\ & \text { and } \\ & 50 \text { cards } \rightarrow(£) 80) \end{aligned}$	M1	oe eg $2 \times 95-50$ (from 75 cards $\rightarrow(£) 95$) or $3 \times 80-2 \times 50$ (from 50 cards $\rightarrow(£) 80)$
(150 cards cost) ($£$)140 and No	A1	

Alternative method 3

$\begin{aligned} & (100(\text { cards }) \rightarrow(£) 110) \\ & 110(\text { cards }) \rightarrow(£) 116 \\ & 120(\text { cards }) \rightarrow(£) 122 \\ & 130(\text { cards }) \rightarrow(£) 128 \\ & (140(\text { cards }) \rightarrow(£) 134) \\ & (150 \text { (cards) } \rightarrow(£) 140) \end{aligned}$	M1	oe eg 130 (cards) $\rightarrow(£) 128$ implies all previous values
(150 cards cost) (£)140 and No or (140 cards cost) ($£$)134 and No	A1	or 130 cards $\rightarrow(£) 128$ and No and $£ 2$ is not enough (to buy 20 more cards) oe or 130 cards $\rightarrow(£) 128$ and No and $£ 2$ can only buy 3 more cards oe
Additional guidance		
Decision (No) must be seen for A		

\mathbf{Q}	Answer	Mark	Comments

9	Arc, radius [4.8, 5.2] cm, centre P or arc, radius [7.3, 7.7] cm, centre R	B1	
	Appropriate region shaded	B1	Must see construction arcs and be within tolerance

\mathbf{Q}	Answer	Mark	Comments

10	Alternative method 1		
	$\begin{aligned} & 270 \div(5+3+2) \text { or } \\ & 270 \div 10 \text { or } 27 \end{aligned}$	M1	oe
	$5 \times$ their $27 \times(0)$.12 or 1620 and $3 \times$ their $27 \times(0)$.15 or 1215 and $2 \times$ their $27 \times(0)$.20 or 1080 or 3915	M1	oe
	39.15	A1	
	Alternative method 2		
	$\begin{aligned} & 5 \times 12+3 \times 15+2 \times 20 \text { or } \\ & 60+45+40 \text { or } 145 \end{aligned}$	M1	oe
	their $145 \times 270 \div(5+3+2)$ or their 145×27 or 3915	M1	oe
	39.15	A1	
		tiona	uidan
	Accept working in pence or $£$ fo		

\mathbf{Q}	Answer	Mark	Comments

Q	Answer	Mark	Comments

11(b)	Alternative method 2		
	$\begin{aligned} & \tan (a)=\frac{1}{37} \quad \text { or } \\ & \sin (a)=\frac{1}{\sqrt{1^{2}+37^{2}}} \quad \text { or } \\ & \cos (a)=\frac{37}{\sqrt{1^{2}+37^{2}}} \end{aligned}$	M1	oe $\begin{aligned} & \text { eg1 } \sin (a)=\frac{1}{\sqrt{1^{2}+37^{2}}} \times \sin 90 \\ & \text { eg2 } \cos (a)=\frac{1^{2}+37^{2}+37^{2}-1^{2}}{2 \times \sqrt{1^{2}+37^{2}} \times 37} \end{aligned}$
	$\begin{aligned} & \tan ^{-1} \frac{1}{37} \\ & \sin ^{-1} \frac{1}{\sqrt{1^{2}+37^{2}}} \\ & \cos ^{-1} \frac{37}{\sqrt{1^{2}+37^{2}}} \end{aligned}$	M1dep	oe $\begin{aligned} & \text { eg1 } \sin ^{-1} \frac{1}{\sqrt{1^{2}+37^{2}}} \times \sin 90 \\ & \text { eg2 } \cos ^{-1} \frac{1^{2}+37^{2}+37^{2}-1^{2}}{2 \times \sqrt{1^{2}+37^{2}} \times 37} \end{aligned}$ M2 $90-\tan ^{-1} 37$ oe
	[1.5, 1.55]	A1	
	Additional guidance		
	M1 must have $\tan (a), \sin (a)$ or $\cos (a)$ as the subject		
	M marks Allow $\frac{1}{37}=0.027(0 \ldots$.$) or 0.03$		
	Scoring 2nd M1 implies M1 M1		
	Note that 90 - 'other' angle scores M2 for complete method (M1 not possible)		
	Allow inv tan or shift tan for $\tan ^{-1}$ etc		
	$\sqrt{1^{2}+37^{2}} \rightarrow[37.01,37.014]$		
	Allow $\frac{1}{37}$ to be $0.027(0 . .$.$) or 0.03$ in working eg $\tan (a)=0.02703 \mathrm{M} 1$		

\mathbf{Q}	Answer	Mark	Comments

12(b)	Plots their points and joins with smooth curve	B1ft	$\pm \frac{1}{2}$ small square
	Additional guidance		
	Allow curve from $t=7$ to $t=12$		
	If any of their values of d are >11 award B0		

12(c)	```5(.00) (am) and 9(.00) (am) or 0500 and 0900```	B2		$5(.00)(\mathrm{am})$ or $9(.00)(\mathrm{am})$ or 0500 or 0900 or 5(.00) pm and 9(.00) pm or 1 and 5
	Additional guidance			
	All times must be in correct positions to score marks			
	Allow use of colons or decimal points			
	If their graph gives more than one time interval allow B2 or B1 for any one correct interval			
	5(.00) (am) and 9(.00) (am) in first answer space and $5(.00)(\mathrm{pm})$ and $9(.00)(\mathrm{pm})$ in second answer space scores B2			

Q	Answer	Mark	Comments
13	$\angle B C O=90-15 \text { or } 75$ or $\angle B O C=75$	M1	
	$\angle O B C=(180-2 \times$ their 75$)$ or 30	M1dep	
	$\angle O B A=(90-$ their 30$)$ or 60	M1dep	dep on M1 M1
	$A B=B C$ and $A B=O B$	M1	oe eg1 $A B C D$ is a square so $A B=O B$ eg2 Single dash on diagram on $A B$ and single dash not on OC
	$(180-60) \div 2(=60)$ and $\angle O A B=\angle A O B=\angle O B A(=60)$	A1	oe Calculation and statement Must score M4 Some equivalences to statement $\begin{aligned} & \angle O A B=\angle A O B=\angle O B A(=60) \text { are shown } \\ & \text { eg1 three equal angles }(=60) \\ & \text { eg2 all angles same }(=60) \\ & \text { eg3 } \angle O A B=\angle A O B=60 \end{aligned}$
	Additional guidance		
	All M marks can be awarded from working on the diagram		
	A1 can only be awarded from working and statement in answer lines		
	If first mark not scored but $\angle O B C=30$ and/or $\angle O B A=60$ award MO M0 M0		
	4th mark could be the only mark gained (eg if no angles attempted)		
	Ignore any reasons given		

Q	Answer	Mark	Comments
	$\begin{aligned} & \pi \times 2.5^{2} \times 2 \text { or } 12.5 \pi \\ & \text { or }[39.2,39.3] \end{aligned}$	M1	oe
	$3 \div 5$ or $\frac{3}{5}$ or 0.6 or $5 \div 3$ or $\frac{5}{3}$ or $1.66 \ldots$ or 1.67	M1	oe 1.2 implies 0.6 or $1.66 \ldots$
	$\pi \times 1.5^{2} \times$ their 0.6×2 or their [39.2, 39.3] \times their 0.6^{3} or $\pi \times 1.5^{2} \div$ their $1.66 \ldots \times 2$ or their $[39.2,39.3] \div$ their $1.66 \ldots{ }^{3}$ or 2.7π or [8.4, 8.5]	M1	oe Must use their scale factor If multiplying, scale factor must be <1 If dividing, scale factor must be >1
14	their volume $\times 2.6$	M1	$\begin{aligned} & \text { eg }[39.2,39.3] \times 2.6 \\ & \quad \text { or }[8.4,8.5] \times 2.6 \\ & \quad \text { or }(12.5 \pi+2.7 \pi) \times 2.6 \end{aligned}$
	[123.7, 124.3] or $\frac{988}{25} \pi$	A1	oe
	Additional guidance		
	Use of diameter(s) instead of radii should be penalised once, the first time it occurs		
	(Additional guidance continues on next page)		

14	Additional guidance
	4th M1 their volume may be a single volume or from a sum of two volumes
	4th M1 their volume cannot be an area or a length and must include π Do not take their stated units $\mathrm{eg} \mathrm{cm}^{3}$ as indicating a volume $\text { eg } \begin{array}{rll} & \pi \times 2.5 \times 2=5 \pi \mathrm{~cm}^{3} & \mathrm{MO} \\ & \pi \times 1.5 \times 1.2=1.8 \pi \mathrm{~cm}^{3} & \mathrm{M} 1 \mathrm{M0} \\ & 6.8 \pi \mathrm{~cm}^{3} \times 2.6=17.68 \pi & \mathrm{MO} \mathrm{AO} \end{array}$
	$4^{\text {th }}$ M1 (volume + area) $\times 2.6$ is acceptable

\mathbf{Q}	Answer	Mark	Comments

15	(Monday) 35×200 or 7000 or $\frac{1}{2} \times(200+250) \times 25$ or 5625 or 60×200 or 12000 or $\frac{1}{2} \times 25 \times 50$ or 625 or (Wednesday) 20×250 or 5000 or $\frac{1}{2} \times(250+150) \times 40$ or 8000 or $\frac{1}{2} \times 40 \times 100$ or 2000 or 40×150 or 6000	M1	oe Correct attempt at any one area section from either graph. May be seen on the graph Allow 1 small square $=10$ or 5 by 5 square $=250$ oe
	(Monday) $35 \times 200+\frac{1}{2} \times(200+250) \times 25$ or $60 \times 200+\frac{1}{2} \times 25 \times 50$ or (Wednesday) $20 \times 250+\frac{1}{2} \times(250+150) \times 40$ or $20 \times 250+\frac{1}{2} \times 40 \times 100+40 \times 150$	M1	oe Fully correct attempt for one graph
	(Monday) 12625 or (Wednesday) 13000	A1	oe eg 12.625 or 13
	12625 and 13000 and Wednesday	A1	oe eg 12.625 and 13 and Wednesday
	Additional guidance		
	Allow Wednesday to be any day other than Monday		

Q	Answer	Mark	Comments
16(a)	$\frac{45}{360}$ or division by 8	M1	oe
	their $\frac{45}{360}(x) \pi(x) 95(x) 95$	M1	oe
	$[3542,3545] \text { or } \frac{9025}{8} \pi$	A1	oe
	Additional guidance		
	$\pi(\times) 95(\times) 95=9025 \pi=[28338.5,28357]$		
	Allow working in centimetres $\frac{45}{360} \times \pi \times 9.5 \times 9.5 \quad \text { M1 M1 }$ Allow [35.42, 35.45] cm^{2} for A1 if cm^{2} stated		

Q	Answer	Mark	Comments

16(b)	$95(x) \cos 45=67.17 \ldots$ or 67.18 or $95(\times) \sin 45=67.17 \ldots$ or 67.18 or $\sqrt{\frac{95^{2}}{2}}=67.17 \ldots$ or 67.18 or $95 \div 2 \cos 45=67.17 \ldots$ or 67.18	B2	oe B1 $\cos 45=\frac{\mathrm{OC}}{95}$ or $95(x) \cos 45$ or $\sin 45=\frac{\mathrm{OC}}{95}$ or $95(x) \sin 45$ or $\frac{\mathrm{OC}}{\sin 45}=\frac{95}{\sin 90}$ oe or $\frac{95^{2}}{2}$ or $95 \div 2 \cos 45$ or $2(x) O C(x) 95(x) \cos 45=95^{2}$ or $67.17 \ldots$ or 67.18 or $\sqrt{95^{2}-67.2^{2}}=67.15 \ldots$ or $\sqrt{67.2^{2}+67.2^{2}}=95.03 \ldots \text { or } 95.04$
	Additional guidance		
	B1 Allow any letter for OC		
	$\sqrt{95^{2}-67.2^{2}}=67.2$ is $B 0$ unless $67.15 \ldots$ also seen		
	$\sqrt{67.2^{2}+67.2^{2}}=95$ is BO unless $95.03 \ldots$ or 95.04 also seen		
	If B 1 for $67.17 \ldots$ or 67.18 is scored, look back to (a) and award B2 if a B2 response is seen there		
	Ignore further work after B2 response eg using Pythagoras to check the answer		

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

16(c)	$\begin{aligned} & \frac{1}{2}(\times)[67.1,67.2](\times)[67.1,67.2] \text { or } \\ & \frac{1}{2}(\times)[67.1,67.2](\times) 95(\times) \sin 45 \\ & \text { or }[2251,2258] \end{aligned}$	M1	
	$\begin{aligned} & \text { (their }[3542,3545]-\text { their }[2251, \\ & 2258]) \times 2.5 \end{aligned}$	M1	(their (a) - their triangle area) $\times 2.5$
	[3210, 3235]	A1ft	Only ft their (a)
	Additional guidance		
	1st M1 Allow dimensions to be different in $\frac{1}{2}$ base \times height as long as both are [67.1, 67.2] eg $\frac{1}{2}(x) 67.1(x) 67.2 \quad$ M1		
	2nd M1 Subtraction must be in the order shown		
	A1ft Allow answer rounded to at least 3sf		

Q	Answer	Mark	Comments
17	$28^{2}-\left(\frac{24}{2}\right)^{2}$ or $784-144$ or 640 or $28^{2}=O X^{2}+\left(\frac{24}{2}\right)^{2}$ or $784=O X^{2}+144$	M1	oe Allow any letter for OX
	$\sqrt{28^{2}-\left(\frac{24}{2}\right)^{2}}$ or $\sqrt{784-144}$	M1dep	M2 $28 \sin \left(\cos ^{-1} \frac{12}{28}\right)$ or $12 \tan \left(\cos ^{-1} \frac{12}{28}\right)$ or $28 \cos \left(\sin ^{-1} \frac{12}{28}\right)$ or $12 \div \tan \left(\sin ^{-1} \frac{12}{28}\right)$
	[25.298, 25.3] or $\sqrt{640}$ or $8 \sqrt{10}$	A1	oe SC1 $14.4(2 \ldots)$ or $\sqrt{208}$ or $4 \sqrt{13}$ oe
	Additional guidance		
	$\sqrt{640}$ or $8 \sqrt{10}$ scores M1 M1 A1 even if subsequent attempt to evaluate seen on answer line		
	M2 (M1 not possible) Allow $\cos ^{-1} \frac{12}{28}$ to be $64.6 \ldots$ and $\sin ^{-1} \frac{12}{28}$ to be [25.37, 25.4] Other angles, eg 64, must have some correct method shown eg1 $28 \sin 64.6 \mathrm{M} 2$$\begin{aligned} \mathrm{eg} 2 \cos x & =\frac{12}{28} \\ x & =64 \end{aligned}$ $28 \sin 64$ M2 eg3 $28 \sin 64$ M0		

18(a)	$120 x^{2}$	B1	
$\mathbf{1 8 (b)}$ $40 x^{3}$ B1			

\mathbf{Q}	Answer	Mark	Comments

Alternative method 1

their (b) \div their (a) linked with 0.5	M1	oe Division in this order only
1.5	A1ft	ft their (b) and their (a) Allow $x \leq 1.5$

Alternative method 2

$120 \div 40 \times 0.5$	M1	oe
1.5	A1	Allow $x \leq 1.5$

Alternative method 3

$60 \div 40$	M1	oe
1.5	A1	Allow $x \leq 1.5$

Additional guidance
Alt 1 A1ft answers to at least 2 sf
18(c)
Alt 1 M1 Link may use = or an inequality symbol
Alt 1 their (a) is $120 x^{2}$ and their (b) is $24 x^{3}$
$24 x^{3} \div 120 x^{2}=0.5 \quad \mathrm{M} 1$
$0.5 \times 5=2.5 \quad$ A1ft
Alt 1 their (a) is $120 x$ and their (b) is $40 x^{3}$

$$
\begin{aligned}
\frac{40 x^{3}}{120 x} & <0.5 \quad \mathrm{M} 1 \\
x^{2} & <1.5 \\
x & =1.2 \quad \text { A1ft }
\end{aligned}
$$

Alt 1 If degree of their $(a) \geq$ degree of their (b) can score a maximum of M1 A0
Alt 1 T \& I scores 2 or 0

Alt 2 oe for M1 $\frac{40}{120}=\frac{1}{3}$ and 0.5×3
Alt $360 \div 120$ may also be seen but does not score unless $60 \div 40$ also seen

\mathbf{Q}	Answer	Mark	Comments

Alternative method 1		
Draws tangent at 9.20	M1	
Attempt at vertical \div horizontal for their tangent	M1	At least one component must be correct $\pm \frac{1}{2}$ small square
[1.6, 2.4] or [96, 144]	A1	Ignore any units seen
```their [1.6, 2.4] × 60\div[1.6, 1.61] or their [1.6, 2.4] × 60 × [0.62, 0.63] or their [96, 144] \div[1.6, 1.61] or their [96, 144] \times [0.62, 0.63]```	M1	Correct method to convert their speed from $\mathrm{km} / \mathrm{min}$ or $\mathrm{km} / \mathrm{h}$ to miles per h oe
[ $59.5,91]$ and correct decision	Q1ft	Strand (iii)   ft if tangent drawn and 2nd and 3rd M marks gained
Additional guidance		
2nd M1 If only one component is correct a triangle must be seen   A correct component is a correct value or a correct $y_{2}-y_{1}$ or a correct $x_{2}-x_{1}$		
2nd M1 Can be implied by the 1st M1 and a correct answer for A1		
No tangent attempted can score a maximum of M0 M0 A0 M1 Q0		


$\mathbf{Q}$	Answer	Mark	Comments


Alternative method 2		
Draws tangent at 9.20	M1	
Attempt at vertical $\div$ horizontal for their tangent	M1	At least one component must be correct $\pm \frac{1}{2}$ small square
[1.6, 2.4] or [96, 144]	A1	Ignore any units seen
```70 < [1.6, 1.61] \div60 or 70\div[0.62, 0.63]\div60 or [1.8, 1.9] or 70 < [1.6, 1.61] or 70\div[0.62, 0.63] or [111, 113]```	M1	Correct method to convert 70 miles per $h$ to $\mathrm{km} / \mathrm{min}$ or $\mathrm{km} / \mathrm{h}$ oe
their [1.6, 2.4] and [1.8, 1.9] and correct decision or their $[96,144]$ and $[111,113]$ and correct decision	Q1ft	Strand (iii) ft if tangent drawn and 2nd and 3rd M marks gained
Additional guidance		
2nd M1 If only one component is correct a triangle must be seen A correct component is a correct value or a correct $y_{2}-y_{1}$ or a correct $x_{2}-x_{1}$		
2nd M1 Can be implied by the 1st M1 and a correct answer for A1		
No tangent attempted can score a maximum of MO MO AO M1 Q0		
Q1ft Must be comparing like for like eg two speeds both in km/h		

\mathbf{Q}	Answer	Mark	Comments

