GCSE Mathematics

93702F Applications of Mathematics
Unit 2: Foundation Tier
Mark scheme

93702F
June 2016

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

M Method marks are awarded for a correct method which could lead to a correct answer.

A

B
ft

SC

Mdep

B dep A mark that can only be awarded if a previous independent mark has been awarded.
oe
Or equivalent. Accept answers that are equivalent. eg, accept 0.5 as well as $\frac{1}{2}$
$[a, b] \quad$ Accept values between a and b inclusive.
$3.14 \ldots \quad$ Allow answers which begin $3.14 \mathrm{eg} 3.14,3.142,3.149$.

Use of brackets It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a candidate has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the candidate. In cases where there is no doubt that the answer has come from incorrect working then the candidate should be penalised.

Questions which ask candidates to show working

Instructions on marking will be given but usually marks are not awarded to candidates who show no working.

Questions which do not ask candidates to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Candidates often copy values from a question incorrectly. If the examiner thinks that the candidate has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the candidate intended it to be a decimal point.

Q	Answer	Mark	Comments
1(a)	0.9 m	B1	
1(b)	80 g	B1	
1(c)	250 ml	B1	

\mathbf{Q}	Answer	Mark	Comments

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

3	Circle radius 6 cm	B1	Allow circle radius [5.8, 6.2] cm
	Vertical diameter	B1 ft	ft their circle
	Two chords of length [9.8,10.2] cm from top of vertical diameter	B1ft	ft their diameter
	Additional guidance		
	3rd mark Allow from one end of their diameter even if not vertical		

4(a)	50	B1	

4(b)	B and 80	B2	B1 80 or 320
	Additional Guidance		
	B with incorrect number or with no number scores B0		

Q	Answer	Mark	Comments

5(a)	E6 and E7 or E7 and E8	B2	B1 Any 2 each othe eg G16 and or any 2 ava columns 1 eg L11 and	hat are next to d C2 re not in
	Additional Guidance			
	Accept 6E for E6 etc			
	Accept E6 and 7 etc			
	Allow if there is an unambiguous response on the diagram			

5(b)	$\begin{aligned} & 6 \times 18+2 \times 13 \text { or } \\ & 8 \times 18-2 \times 2-2 \times 3 \end{aligned} \quad \text { or } \quad \begin{aligned} & \\ & {[128,140]} \end{aligned}$	M1	oe Correct attempt at calculating number of seats sold in rows A to H or answer in the range shown
	$\begin{aligned} & 3 \times 18+2 \times 14-8 \text { or } \\ & 5 \times 14+3 \times 2+3 \times 2-8 \\ & 2 \times 18+2 \times 14+10 \text { or } \\ & 74 \end{aligned}$	M1	oe Correct attempt at calculating number of seats sold in rows J to N
	their $134 \times 22.5(0)$ or 3015 or their 74×16.(00) or 1184	M1dep	their 134 and their 74 must each be >1 dep on M1M0 or M0M1
	4199	A1	
6(a)	13 ± 1 (sides) or 216 or 252	M1	May be implied eg 6×36 implies 12 (sides)
	234	A1	

\mathbf{Q}	Answer	Mark	Comments

6(b)	Alternative Method 1		
	(equilateral triangle angle $=$) 60	M1	May be implied or be seen on diagram
	$(x=) 30$	A1	
	180-2 \times their 30	M1	
	$(y=) 120$	A1ft	ft their $x=30$
	Alternative Method 2		
	(equilateral triangle angle $=$) 60	M1	May be implied or be seen on diagram
	$(y=) 120$	A1	
	$\frac{180-\text { their } 120}{2}$	M1	
	$(x=) 30$	A1ft	ft their $y=120$

$7(b)$	2	B1	

Q	Answer	Mark	Comments
8	1.5 seen	M1	
	their 1.5×0.88 or 1.32	M1	oe eg working in pence $88+44$ implies M2
	(6 - their 1.32) $\div 1.95$	M1dep	oe dep on 2nd M1
	2.4	A1	oe
9(a)	62.5 miles	B1	

9(b)	Alternative Method 1		
	$140 \div 100$ or $1.4(0)$	M1	or their 62.5×140
	their $1.4(0) \times$ their 62.5	M1dep	their 62.5 from (a)
	87.5	A1ft	Correct or ft their 62.5 from (a) and M2 ifw
	Alternative Method 2		
	their $62.5 \div 100$ or 0.625	M1	their 62.5 from (a)
	their 0.625×140	M1dep	
	87.5	A1ft	Correct or ft their 62.5 from (a) and M2 ifw
	Alternative Method 3		
	$\frac{40}{100} \times$ their 62.5 or 25	M1	their 62.5 from (a)
	their $62.5+$ their 25	M1dep	their 62.5 from (a)
	87.5	A1ft	Correct or ft their 62.5 from (a) and M2 ifw
	Alternative Method 4		
	$1 \mathrm{~km}=[0.6,0.63]$ mile or $8 \mathrm{~km}=5 \mathrm{miles}$	M1	1 mile $=[1.58,1.7] \mathrm{km}$
	$140 \times$ their [$0.6,0.63$] or $140 \times 5 / 8$	M1dep	$140 \div$ their [$1.58,1.7]$ or $140 \div 8 / 5$

\mathbf{Q}	Answer	Mark	Comments

$\begin{gathered} 9(b) \\ \text { (cont) } \end{gathered}$	87.5			A1	ifw	
	Additional Guidance					
	ft answers from (a) for alts 1, 2 and 3					
	In Alt 4 they do not use their answer to part (a) so no ft					

$9(\mathrm{c})$	$\frac{1}{2} \times 3 \times 12$ or 18 	M1 or $2 \times 7.5(0)$ or $15(.00)$	oe
	$3 \times 40+2 \times 7.5(0)+$ their 18	M1	Must be sum of 3 components their 18 can be 36
	A1	SC2 171	

\mathbf{Q}	Answer	Mark	Comments

\mathbf{Q}	Answer	Mark	Comments

11	Alternative Method 1		
	40 (mph)	B1	can be implied
	$20 \div$ their 40 or $0.5(\mathrm{~h})$ or $30(\mathrm{~min})$ or 6.10	M1	oe
	6.10 and $Y e s$ or 30 (mins) and 35 (mins) and Yes	A1ft	ft their 40 (mph) and decision with B0 M1
	Alternative Method 2		
	40 (mph)	B1	
	$6.15-5.40$ or $35(\mathrm{~min})$ and $20 \div \frac{35}{60} \text { or } \quad[34.234 .3]$	M1	oe Allow 34 if correct method seen
	[34.2, 34.3] and their 40 and Yes	A1ft	ft their 40 (mph) and decision with B0 M1 Allow 34 if correct method seen

$\mathbf{1 2}$	197.6×1000 or 197600 or 95×65 or 6175	M1	
	their $197600 \div(95 \times 65)$	M1dep	oe
	32	A1	

\mathbf{Q}	Answer	Mark	Comments

\mathbf{Q}	Answer	Mark	Comments

\mathbf{Q}	Answer	Mark	Comments

| 14 | 60 | $\begin{array}{l}\text { B1 Any other multiple of } 60 \text { as the answer } \\ \text { or } \\ \text { correctly converts all } 3 \text { fractions to a } \\ \text { common denominator }\end{array}$ |
| :---: | :--- | :---: | :--- | :--- |
| | | |$]$

15	$4 x+57.6=67.2$	B1	oe equation eg1 $x+x+x+x+57.6=67.2$ eg2 $4 x=9.6$ (scores M1 also) eg3 $x=\frac{67.2-57.6}{4}$ (scores M1 also) $x=2.4$ with no other equation is BO	
	$\begin{aligned} & 4 x=67.2-57.6 \\ & \text { or }(67.2-57.6) \div 4 \end{aligned}$	M1	Isolates and collects term in x for their equation of form $a x+b=c$ $a>1 \quad b \neq 0 \quad c \neq 0$ Allow one rearranging error	
	2.4	A1ft	ft B0 M1 with no rearranging errors SC2 2.4 with no equation seen	
	Additional Guidance			
	$\begin{aligned} & 3 x+57.6=67.2 \\ & 3 x=9.6 \\ & x=3.2 \end{aligned}$			B0 M1 A1ft
	Embedded solutions can score 1 or 2 marks eg1 $4 x=9.6$ $4 \times 2.4=9.6 \quad$ (nothing on answer line) eg2 $4 \times 2.4+57.6=67.2 \quad$ (nothing on answer line)			$\begin{aligned} & \text { B1 M1 } \\ & \text { A0 } \\ & \text { B0 M1 } \end{aligned}$

Q	Answer	Mark	Comments

$\begin{gathered} 16 \\ \text { (cont) } \end{gathered}$	Alternative method 1		
	Any two of 6 (litres apple) 1.5 (litres orange) 1.5 (litres pineapple)	M1	oe eg working in ml Number of litres she needs to buy Implied by any two of 3 (cartons apple) 2 (cartons orange) 3 (cartons pineapple)
	$\begin{aligned} & \text { (apple) } 5 \div 30 \text { or }[0.16,0.17] \\ & \text { or } \\ & \text { (orange/pineapple) } \\ & 1.25 \div 30 \text { or }[0.0416,0.042] \end{aligned}$	M1	oe eg working in ml Number of litres per person
	```(apple) their 6 % their [0.16, 0.17] and (orange) their 1.5 \div their [0.0416, 0.0417] and (pineapple) their 1.5 : their [0.0416, 0.0417]```	M1dep	oe   Division of their litres by their litres   per person   dep on M1 M1   If the same number of litres of orange and pineapple, only need to see   their $1.5 \div$ their $[0.0416,0.0417]$ once
	36	Q1	Strand (ii)   All three numbers of litres must be correct in 1st M1 and correct working seen for 3rd M1   SC1 36 with no M marks gained
		ditional	idance
	Answer 36 will not always gain 4		


Q	Answer	Mark	Comments


$\begin{gathered} 16 \\ \text { (cont) } \end{gathered}$	Alternative method 2		
	Any two of   6 (litres apple)   1.5 (litres orange)   1.5 (litres pineapple)	M1	oe eg working in ml   Number of litres she needs to buy   Implied by any two of   3 (cartons apple)   2 (cartons orange)   3 (cartons pineapple)
	(apple) $30 \div 5$ or 6 or   (orange/pineapple) $30 \div 1.25 \text { or } 24$	M1	oe eg working in ml Number of people per litre
	(apple)   their $6 \times$ their 6   and   (orange)   their $1.5 \times$ their 24   and   (pineapple)   their $1.5 \times$ their 24	M1dep	oe   Multiplication of their litres by their number of people per litre dep on M1 M1   If the same number of litres of orange and pineapple, only need to see their $1.5 \times$ their 24 once
	36	Q1	Strand (ii)   All three numbers of litres must be correct in 1st M1 and correct working seen for 3rd M1   SC1 36 with no M marks gained
	Additional Guidance		
	Answer 36 will not always gain 4 marks		


Q	Answer	Mark	Comments


$\begin{gathered} 16 \\ \text { (cont) } \end{gathered}$	Alternative method 3		
	Any two of   6 (litres apple)   1.5 (litres orange)   1.5 (litres pineapple)	M1	oe eg working in ml   Number of litres she needs to buy   Implied by any two of   3 (cartons apple)   2 (cartons orange)   3 (cartons pineapple)
	(apple) their 6-5 or 1 (I) or (orange) their 1.5-1.25 or 0.25 (I)   or (pineapple) their 1.5-1.25 or 0.25 (I)	M1	oe eg working in ml   Difference between their litres and litres needed for 30 people
	(apple) their $1 \div 5 \times 30$ or 6 and (orange) their $0.25 \div 1.25 \times 30$ or 6 and (pineapple) their $0.25 \div 1.25 \times 30$ or 6	M1dep	oe eg working in ml   dep on M1 M1   If the same number of litres of orange and pineapple in 2nd M1, only need to see their $0.25 \div 1.25 \times 30$ once
	36	Q1	Strand (ii)   All three numbers of litres must be correct in 1st M1 and correct working seen for 3rd M1   SC1 36 with no M marks gained
		itional	idance
	Answer 36 will not always gain 4 mar		


Q	Answer	Mark	Comments


$\begin{gathered} 16 \\ \text { (cont) } \end{gathered}$	Alternative method 4		
	Any two of   6 (litres apple)   1.5 (litres orange)   1.5 (litres pineapple)	M1	oe eg working in ml   Number of litres she needs to buy   Implied by any two of   3 (cartons apple)   2 (cartons orange)   3 (cartons pineapple)
	(apple) their $6 \div 5$ or 1.2 or   (orange)   their $1.5 \div 1.25$ or 1.2   or   (pineapple)   their $1.5 \div 1.25$ or 1.2	M1	oe eg working in ml   Division of their litres by litres needed for 30 people   Implied by $9 \div 7.5$ ( $=1.2$ )   or $9 \div(7.5 \div 30)$
	$30 \times$ their 1.2	M1dep	oe   dep on M1 M1   Only award if three equal values are seen in 2nd M1   If the same number of litres of orange and pineapple, only need to see   their $1.5 \div 1.25$ once in 2nd M1
	36	Q1	Strand (ii)   All three numbers of litres must be correct in 1st M1 and correct working seen for 3rd M1   SC1 36 with no M marks gained
		ditional	idance
	Answer 36 will not always		


$\mathbf{Q}$	Answer	Mark	Comments


16 (cont)	Alternative method 5		
	Any two of   6 (litres apple)   1.5 (litres orange)   1.5 (litres pineapple)	M1	oe eg working in ml   Number of litres she needs to buy   Implied by any two of   3 (cartons apple)   2 (cartons orange)   3 (cartons pineapple)
	their $6:$ their 1.5 : their $1.5=4: 1: 1$ or $5: 1.25(: 1.25)=4: 1(: 1)$	M1	oe eg working in ml   If the same number of litres of orange and pineapple, only need to see $6: 1.5=4: 1$
	(their $6+$ their $1.5+$ their 1.5$) \times$ $(30 \div(5+1.25+1.25))$	M1dep	$\begin{aligned} & \text { oe eg } 9 \div 0.25 \\ & \text { dep on M1 M1 } \end{aligned}$   Only award if two identical simplified ratios are seen in 2nd M1
	36	Q1	Strand (ii)   All three numbers of litres must be correct in 1st M1 and correct working seen for 3rd M1   SC1 36 with no M marks gained
	Additional Guidance		
	Answer 36 will not always gain 4 marks		


$\mathbf{Q}$	Answer	Mark	Comments


17	$11 \times 4$ or $44(\mathrm{~cm})$ or $440(\mathrm{~mm})$ or   $7.5 \times 4$ or $30(\mathrm{~cm})$ or $300(\mathrm{~mm})$ or   $4 \times 4$ or $16(\mathrm{~cm})$ or $160(\mathrm{~mm})$	M1	May be seen on diagram   Allow [10.8, 11.2] $\times 4$   or $[43.2,44.8] \mathrm{cm}$ or $[432,448] \mathrm{mm}$ or $[7.3,7.7] \times 4$   or $[29.2,30.8] \mathrm{cm}$ or $[292,308] \mathrm{mm}$ or $[3.8,4.2] \times 4$   or $[15.2,16.8] \mathrm{cm}$ or $[152,168] \mathrm{mm}$
	their $440 \div 72$ or $6(.1 \ldots)$   or   their $300 \div 72$ or $4(.1 \ldots)$ or 4.2   or   their $160 \div 72$ or $2(.2 \ldots)$	M1dep	oe eg their $44 \div 7.2$ $72 \times 6=432$   or $72 \times 4=288$   or $72 \times 2=144$   Implied by   (their $440 \times$ their $300 \times$ their 160 ) $\div 72^{3}$ oe
	their $6 \times$ their $4 \times$ their 2 or 48	M1dep	their 6 , their 4 and their 2 must be integers from rounding down their values
	48 and decision with no incorrect working	A1	
	Additional Guidance		
	Working with volumes can score a maximum of M1 M1 M0 A0		


18(a)	$(5 \rightarrow$ ) 13.5	B2	B1 Any two values correct Other values may be incorrect or missing
	$(10 \rightarrow$ ) 24		
	$(30 \rightarrow$ ) 36		
	$(50 \rightarrow) 0$		


$\mathbf{Q}$	Answer	Mark	Comments


18(b)	Smooth quadratic curve through $\begin{aligned} & (0,0),(5,13.5),(10,24), \\ & (20,36),(30,36),(40,24) \\ & (45,13.5) \text { and }(50,0) \end{aligned}$   All points $\pm 0.5$ square	B2ft	Correct or ft their poin B1   B1ft At least 5 points   All points $\pm 0.5$ square	(a) for B2 or   d correctly
	Additional Guidance			
	For B2, curve must have $36.5 \leq$ maximum $y$ value $\leq 39.5$			
	For B 2 and B 1 , points can be implied by their graph passing through the points			


18(c)	37.5	B1ft	Correct or ft their quadratic graph if   $36.5 \leq$ answer $\leq 40$   Allow $\pm 0.5$ square


19(a)	$\pi \times 9^{2}$ or $81 \pi$   or [254, 254.502] or 255	M1	
	$\pi \times\left(10+\frac{18}{2}\right)^{2}$   or $361 \pi$   or [1133.5, 1134.3]	M1	$280 \pi$ or [879.2, 879.8] implies M2
	[879.2, 879.8] and 880	A1	
	Additional Guidance		
	$280 \pi=880$ is M1 M1 A0		


$\mathbf{Q}$	Answer	Mark	Comments


19(b)	Alternative method 1		
	$\begin{aligned} & 85 \times 40-2 \times \text { their } 880 \\ & \text { or } 1640 \end{aligned}$	M1	oe correct or using their (a)
	$\text { their } 1640 \div(85 \times 40)$   or $[0.48,0.484]$	M1dep	oe
	[48, 48.4]	A1	
	Alternative method 2		
	$\begin{aligned} & 2 \times \text { their } 880 \div(85 \times 40) \text { or } \\ & 1760 \div 3400 \text { or }[0.516,0.52] \end{aligned}$	M1	oe   correct or using their (a)
	$\begin{aligned} & 1 \text { - their }[0.516,0.52] \\ & \text { or } \\ & {[0.48,0.484]} \end{aligned}$	M1dep	oe
	[48, 48.4]	A1	


20(a)	4	B1	


20(b)	$\frac{1}{2} \times 12 \times 6$   or $\frac{1}{2} \times 10 \times 8$	M1	oe eg $\frac{1}{2} \times 3 \times 6(+) \frac{1}{2} \times(12-3) \times 6$
	36 or 40	A1	
	36 and 40 and Finn	Q1	Strand (ii)   Two correct areas and correct decision

