AQA

AQA Qualifications

GCSE
 Applications of Mathematics
 (Linked Pair Pilot)

93702F
Unit 2: Foundation Tier
Mark scheme

93702F

June 2014

Final v1.0

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

M Method marks are awarded for a correct method which could lead to a correct answer.

M dep A method mark dependent on a previous method mark being awarded.

A Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.

B Marks awarded independent of method.
B dep A mark that can only be awarded if a previous independent mark has been awarded.
ft Follow through marks. Marks awarded following a mistake in an earlier step.

SC Special case. Marks awarded within the scheme for a common misinterpretation which has some mathematical worth.
oe Or equivalent. Accept answers that are equivalent.
eg, accept 0.5 as well as $\frac{1}{2}$
$[\mathbf{a}, \boldsymbol{b}] \quad$ Accept values between a and b inclusive.

A2 Foundation Tier

\mathbf{Q}	Answer	Mark	Comments

$\mathbf{1 (a)}$	680	B1	
$\mathbf{1 (b)}$	$1.6(00)$	B1	oe eg $1 \frac{3}{5}$

2	$1.89+1.65$ or 3.54	M1	oe eg $189+165$ or 354
	$5-$ their 3.54 or 1.46	M1	oe eg $500-$ their 354 or 146
	$£ 1$ 20p 20p 5p 1p	A1ft	If M1M0 or M0M1 scored ft from their 146 condone 4 to 6 coins

3(a)	Completely correct diagram	B2	B1 Any one correct section Allow vertices $\pm 2 \mathrm{~mm}$

\mathbf{Q}	Answer	Mark	Comments

Alternative method 1

Clear diagram showing 6 (or 7)	B2

B1 Diagram with at least one row of $3(\times 8$ cm) across
or
Diagram with at least one row of 3 ($\times 6$ cm) across
or
Diagram with at least one column of 2
($\times 6 \mathrm{~cm}$) down
or
Diagram with at least one column of 1 $(\times 6 \mathrm{~cm})$ and $1(\times 8 \mathrm{~cm})$ down

Alternative method 2

Complete explanation. Eg
$3 \times 8=24$ and $2 \times 6=12$
or
$24 \div 3=8$ and $12 \div 2=6$
or
3 across is less than 25 and
2 down is less than 15

B2
B1 Partial explanation. Eg
$3 \times 8=24$ or $2 \times 6=12$
or
$24 \div 3=8$ or $12 \div 2=6$
or
3 across is less than 25 or 2 down is less than 15

Alternative method 3

$$
(25 \times 15) \div(8 \times 6)=7 .(\ldots)
$$

B1 oe

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

4(a)	Any four single room costs seen	M1	Must be 70 or 110 but not necessarily a combination of 70 and 110 $\begin{array}{ll} \text { eg } & 70(+) 110(+) 110(+) 110 \\ & 2 \times 70 \text { and } 2 \times 110 \\ & 70(+) 70(+) 70(+) 70 \end{array}$ 210 and 110
	Any four single room costs added	M1	Must use a combination of 70 and 110 eg $70+110+110+110$ or 400 or $70+70+70+110 \text { or } 320$
	360	A1	SC2 520
4(b)	Thursday room 140 and Friday room 120	B1	Can be implied from daily totals Bill does not have to be complete
	Friday breakfast 23	B1	
	Total bill 283	B1ft	ft their $140+$ their $120+$ their 23 or their 140 + their 143 For B1B1B1ft must complete bill correctly

\mathbf{Q}	Answer	Mark	Comments

6(a)	2	B1	
6(b)	[$5.8 \mathrm{~cm}, 6.2 \mathrm{~cm}$] or [$58 \mathrm{~mm}, 62 \mathrm{~mm}$]	B2	oe eg [2.25 inches, 2.45 inches] B1 [5.8, 6.2] or [58, 62] Units may be incorrect or missing or $\quad[2.8 \mathrm{~cm}$, or 3.2 cm] or [28 mm, 32 mm]
6(c)	Circle, centre P, radius $[3.8,4.2] \mathrm{cm}$ and Two radii drawn from P each at [$43^{\circ}, 47^{\circ}$] to given line stopping at inner circle ($\pm 2 \mathrm{~mm}$)	B2	B1 Circle, centre P, radius [3.8, 4.2]cm or Two radii drawn from P each at [$43^{\circ}, 47^{\circ}$] to given line

Q	Answer	Mark	Comments

7(a)	16	B2	B1 Diagram showing 6 or 7 tables in a row with evidence of counting edges or people on the diagram or Calculation leading to 16 eg $7+7+2$ or (4) (6) (8) 101214 (16)
7(b)	Arrangement with exactly 12 tables in rows that will seat exactly 30 that has exactly one row of four tables and no single table. Eg One row of 6 and one row of 4 and one row of 2 One row of 5 and one row of 4 and one row of 3	B3	B2 Arrangement with exactly 12 tables in rows that will seat $[28,32]$ that has exactly one row of four tables and no single table. Eg One row of 4 and two rows of 3 and one row of 2 (32 people) or Arrangement with exactly 12 tables in rows that will seat exactly 30 people that does not have exactly one row of four tables or no single tables. Eg Two rows of 5 and one row of 2 Three rows of 4 or Arrangement with exactly 12 tables some not in rows that will seat exactly 30 people that has exactly one row of four tables and no single table One 2 by 2 square, one row of 4 and two rows of 2 B1 Arrangement with $[11,13]$ tables that will seat [26, 34] people that may or may not have exactly one row of four tables or no single table. Eg One row of 4 and two rows of 3 and two single tables Four rows of 3 One row of 4 and three rows of 3 One row of 4 and three rows of 2 and one single tables

\mathbf{Q}	Answer	Mark	Comments

8(a)	$(6,4)$	B1	
8(b)	700	B2	B1 7 seen or 600 or 800 or Shortest route shown on diagram
8(c)	$(3,6)$	B2	Allow $(6,-1)$ or $(7,0)$ or $(8,1)$ for B2 B1 $(0,5)$ or $(1,4)$ or $(1,6)$ or $(2,3)$ or $(2,5)$ or $(3,2)$ or $(4,1)$ or $(4,5)$ or $(5,0)$ or $(5,4)$ or $(6,3)$ or $(2,6)$

9(a)	75°	B1	Any unambiguous indication
9(b)	075	Q1ft	Strand (i) Must have 0 as first digit ft their (a) Allow [073, 077]

$\mathbf{1 0 (a)}$	60	B1	
$\mathbf{1 0 (b)}$	55	B1	
$\mathbf{1 0 (c)}$	No and Valid explanation. Eg (Because) the angle should be 45 Other angle is 48 so there are no equal angles (which means it is not isosceles) (Because) $42+42+90=174$ (not 180)	oe	

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

11(a)	16	B1	
11(b)	$\begin{aligned} & 5 \times 20(\mathrm{~cm})=100(\mathrm{~cm}) \text { and } \\ & 100 \mathrm{~cm}=1 \mathrm{~m} \\ & \text { or } \\ & 20(\mathrm{~cm})=0.2(\mathrm{~m}) \text { and } \\ & 5 \times 0.2(\mathrm{~m})=1(\mathrm{~m}) \end{aligned}$	Q2	oe Strand (ii) Fully correct explanation $\text { Q1 } \begin{array}{ll} & 5 \times 20(\mathrm{~cm})=100(\mathrm{~cm}) \text { or } \\ & 100 \mathrm{~cm}=1 \mathrm{~m} \text { or } \\ & 20(\mathrm{~cm})=0.2(\mathrm{~m}) \text { or } \\ & 5 \times 0.2(\mathrm{~m})=1(\mathrm{~m}) \end{array}$
11(c)	$5 \times$ their 16 or 80 or $3 \times$ their 16 or 48 or 5×3 or 15 or Rectangle split in to 15 squares	M1	their 16 from (a)
	$5 \times$ their 16×3	M1	Implies the first M1
	240	A1ft	only ft their 16

12(a)	5 (miles)	B 1	
12(b)	4.20	B 1	
12(c)	1.20	B 1 ft	ft their (b) -3

13(a)	4.5	B1	
$\mathbf{1 3 (b)}$	$30 \times 20 \times 20$ or 12000	M1	
	$12000 \div 1000$ or 12	M1	$2 \times$ their 4.5×1000 or their 9000
	12 and their 9 and Yes or $12 \div$ their $4.5 ~=~ t h e i r ~$ or $2.6(\ldots)$ or 12000 and Yes their 9000 and Yes	ft correct decision based on their (a) if M2 scored	

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

14(a)	$120+90+120+90$	M1	oe
	420	A1	
	120×90 or 10800	M1	
	their 10800×4.15	M1	
	44820	A1	
	45000	B1ft	ft if cost >500 seen and correctly rounded to nearest 1000

15(a)	[80 (mph), 82 (mph)] and France or Point on line at $130 \mathrm{~km} / \mathrm{h}$ identified and France or $[111(\mathrm{~km} / \mathrm{h}), 113(\mathrm{~km} / \mathrm{h})]$ and France or Point on line at 70 mph identified and France	B1	

\mathbf{Q}	Answer	Mark	Comments

15(b)	Alternative method 1		
	(60mph) $\rightarrow 96$ (km/h)	B1	288 (km) $\rightarrow 180$ (miles)
	$288(\mathrm{~km}) \div$ their $96(\mathrm{~km} / \mathrm{h})$ or $3(\mathrm{~h})$	M1	their 180 (miles) $\div 60$ (mph) or 3 (h)
	```10.45(am) + their 3(h) or 1.45(pm) or 2(pm) - their 3(h) or 11(.00 am) or 2(pm)-10.45(am) or 3.25(h) or 3h 15min```	M1	Condone 3.15(h)
	Yes and their 1.45 (pm)   or   Yes and their 11(.00 am)   or   Yes and their 3(h) and their 3.25(h) or   Yes and their 15 minutes	A1ft	ft B0 M2 Only ft their $96(\mathrm{~km} / \mathrm{h})$ or their 180 miles
	Alternative method 2		
	(60mph) $\rightarrow 96$ (km/h)	B1	
	$2(\mathrm{pm})-10.45(\mathrm{am})$ or $3.25(\mathrm{~h})$ or 3 h 15 min	M1	Condone 3.15(h)
	$288(\mathrm{~km}) \div$ their $3.25(\mathrm{~h})$ or [88, 89] (km/h)	M1	
	Yes   and   their [88, 89] (km/h) and their 96 (km/h)	A1ft	ft B0 M2   Only ft their 96 (km/h) or 180 (miles)


$\mathbf{Q}$	Answer	Mark	Comments


15(b)	Alternative method 3		
	$2(\mathrm{pm})-10.45(\mathrm{am})$ or $3.25(\mathrm{~h})$ or 3 h 15 min	M1	Condone 3.15(h)
	$288(\mathrm{~km}) \div$ their $3.25(\mathrm{~h})$ or   [88, 89] (km/h)	M1	
	$[88,89](\mathrm{km} / \mathrm{h}) \rightarrow[54,56](\mathrm{mph})$	B1ft	ft their [88, 89] (km/h)
	Yes and [54, 56] (mph)	A1	
	Alternative method 4		
	$2(\mathrm{pm})-10.45 \text { or } 3.25(\mathrm{~h})$ or 3 h 15 min	M1	Condone 3.15(h)
	$60(\mathrm{mph}) \times$ their $3.25(\mathrm{~h})$ or 195 (miles)	M1	
	195 (miles) $\rightarrow 312$ (km)	B1ft	ft their 195 (miles)
	Yes and 312 (km)	A1	


| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |


15(b)	Alternative method 5		
	(60mph) $\rightarrow 96$ (km/h)	B1	
	$2(\mathrm{pm})-10.45(\mathrm{am})$ or $3.25(\mathrm{~h})$ or 3 h 15 min	M1	Condone 3.15(h)
	their $96(\mathrm{~km} / \mathrm{h}) \times$ their $3.25(\mathrm{~h})$ or 312 (km)	M1	
	Yes and their 312 (km)	A1ft	ft BO M2   Only ft their $96(\mathrm{~km} / \mathrm{h})$
	Alternative method 6		
	288 (km) $\rightarrow 180$ (miles)	B1	
	$2(\mathrm{pm})-10.45(\mathrm{am}) \text { or } 3.25(\mathrm{~h})$ or 3 (h) 15 (min)	M1	Condone 3.15 (h)
	```their }180\mathrm{ (miles) % their 3.25 or [55,56] (mph) or 60(mph) > 3.25 (hours) or }195\mathrm{ (miles)```	M1	
	Yes and their [55, 56] (mph) or Yes and their 180 (miles) and 195 (miles)	A1ft	ft BOM2 Only ft their 180 (miles)

\mathbf{Q}	Answer	Mark	Comments

16(a)	Any correct equation e.g.1 e.g.2 $2 x+x+96+96=360$ e.g. $3 \quad x+\frac{1}{2} x+96=180$	B1	
	Correct rearrangement of their equation to the form $a x=b$ or $\frac{360-96-96}{3}$	M 1	$3 x=168$ or $\frac{3}{2} x=84 \quad$ oe if B 1 Follow through their equation of form $p x+q=r$ a, b, p, q and r all non-zero
	56	A1ft	ft their $a x=b$ if M 1 gained

	Answer	Mark	Comments

	Answer	Mark	Comments

17	Alternative method 1		
	$150 \div 6$ or 25 (1 person)	M1	150×2 or 300 (12 people) or $\frac{150}{2}$ or $75 \quad$ (3 people)
	their 25×15	M1dep	their $300+$ their 75 or their 75×5
	375	A1	
	Alternative method 2		
	$15 \div 6$ or 2.5	M1	
	their 2.5×150	M1dep	
	375	A1	

	Answer	Mark	Comments

18	Two pairs of intersecting arcs with equal radii from centres A and B	M1		
	Straight line between the intersecting arcs (may go outside the island and/or not be all the way across the island)			
		Q1		

19(a)	70-22-22 or 26 seen	M1	26 may be seen on the diagram
	572	A1	
19(b)	$\begin{aligned} & \text { Smooth curve passing though }(0,0) \text {, } \\ & (5,300),(10,500),(15,600), \\ & (17.5,612.5),(20,600),(25,500) \text {, } \\ & (30,300) \text { and }(35,0) \end{aligned}$	B2	B1 Any six points plotted correctly from $(0,0),(5,300),(10,500),(15,600)$, $(17.5,612.5),(20,600),(25,500)$, $(30,300)$ and $(35,0)$ All points within half a square Points can be implied by a graph
19(c)	area $\div 0.75$	M1	$0<$ area ≤ 650
	[816, 817]	A1	
	816	B1ft	ft value or calculation rounded down to nearest integer SC1 612.5 seen

