## $A Q A^{E}$

AQA Qualifications

# GCSE <br> Mathematics 

Linked Pair - Applications of Mathematics
Paper Unit 1 Higher tier
Mark Scheme

## 93701H

November 2014
Version/Stage 1.0 Final

## Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

M

A

B
ft

SC Special case. Marks awarded within the scheme for a common misinterpretation which has some mathematical worth.

M dep $\quad$ A method mark dependent on a previous method mark being awarded.

B dep A mark that can only be awarded if a previous independent mark has been awarded.
oe
Or equivalent. Accept answers that are equivalent. eg, accept 0.5 as well as $\frac{1}{2}$
$[\boldsymbol{a}, \boldsymbol{b}] \quad$ Accept values between $a$ and $b$ inclusive.
$3.14 \ldots \quad$ Allow answers which begin 3.14 eg 3.14, 3.142, 3.149.

Use of brackets It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

## Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

## Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a candidate has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the candidate. In cases where there is no doubt that the answer has come from incorrect working then the candidate should be penalised.

## Questions which ask candidates to show working

Instructions on marking will be given but usually marks are not awarded to candidates who show no working.

## Questions which do not ask candidates to show working

As a general principle, a correct response is awarded full marks.

## Misread or miscopy

Candidates often copy values from a question incorrectly. If the examiner thinks that the candidate has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

## Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

## Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then $M$ marks can be awarded but any incorrect answer or method would result in marks being lost.

## Work not replaced

Erased or crossed out work that is still legible should be marked.

## Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

## Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

| Q | Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |


| 1(a) | = Sum (C2 : C6) <br> or <br> $=C 2+C 3+C 4+C 5+C 6$ <br> or <br> $=$ Sum (C2 $+\mathrm{C} 3+\mathrm{C} 4+\mathrm{C} 5+\mathrm{C} 6)$ <br> or <br> $=$ Sum (C2 , C3 $, \mathrm{C} 4, \mathrm{C} 5, \mathrm{C} 6)$ | B2 | B1 For formula without equals sign <br> or <br> B1 For one cell reference error <br> eg $=\mathrm{Sum}(\mathrm{C} 1: \mathrm{C} 6)$ <br> or $=(\mathrm{C} 2+\mathrm{C} 3+\mathrm{C} 5+\mathrm{C} 6)$ |
| :---: | :--- | :---: | :--- |
| 1(b) | Mean circled or indicated | B1 | Condone missing brackets |


| 2(a) | Line from 15 to 22 | B1 | $\pm 1 \mathrm{~mm}$ |
| :---: | :--- | :---: | :--- |
|  | Open circles on both ends | Q1 | Strand (i) Correct mathematical notation |


| $\mathbf{Q}$ | Additional Guidance | Mark |
| :---: | :--- | :--- |
| $\mathbf{2 ( a )}$ | Allow use of given line with open circles at 15 and 22 for B2 <br> Or two circles at 15 and 22 with 1 or 2 closed for B1 |  |


| 2(b) | $22<x \leq 25$ <br> or $22<x$ and $x \leq 25$ | B2 | B1 22 and 25 used but one incorrect <br> symbol <br> or <br> B1 For $22<x$ or $x \leq 25$ <br> oe |
| :--- | :--- | :---: | :--- |


| $\mathbf{Q}$ | Additional Guidance | Mark |
| :---: | :--- | :--- |
| $\mathbf{2 ( b )}$ | $22 \leq x \leq 25$ (one incorrect symbol) | B1 |
|  | $22<x<25$ (one incorrect symbol) | B1 |
|  | $22>x>25$ (two incorrect symbols) | B0 |


| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

## Alternative method 1

| $180 \div 3$ and | M1 | Oe Compares any number of grams <br> consistently. <br> $245 \div 4$ (compares 150 g ) <br> or <br> $180 \div 9$ and <br> $245 \div 12$ (compares 50 g ) <br> or <br> $180 \div 450$ and <br> $245 \div 600$ (compares 1g) in pence or pounds |
| :--- | :---: | :--- |
| 60 and 61 or $[61.2,62.3]$ <br> or <br> 20 and $20(.4 \ldots)$ <br> or <br> $0.4(0)$ and $[0.408,0.41]$ | A1 | Comparing same number of grams <br> Can be in pence or pounds |
| Regular | Q1ft | Strand (iii) <br> ft Conclusion based on their 2 values if <br> M1 awarded |

## Alternative method 2

| $450 \div 180$ and $600 \div 245$ <br> or <br> $450 \div 1.8(0)$ and $600 \div 2.45$ | M1 | Compares grams per penny <br> or grams per pound |
| :--- | :---: | :--- |
| 2.5 and [2.4, 2.45] <br> or <br> 250 and [2.4, 2.45] | A1 |  |
| Regular | Q1ft | Strand (iii) <br> ft Conclusion based on their 2 values if <br> M1 awarded |


| Q | Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |


| 3 | Alternative method 3 |  |  |
| :---: | :---: | :---: | :---: |
|  | $1.80 \div 3 \times 4$ | M1 | oe <br> Can be in pence or pounds |
|  | 2.40 | A1 | Must be in pounds unless 245 p also seen |
|  | Regular | Q1ft | Strand (iii) <br> ft Conclusion based on their 2 values if M1 awarded |
|  | Alternative method 4 |  |  |
|  | $2.45 \div 4 \times 3$ | M1 | oe <br> Can be in pence or pounds |
|  | 1.83(...) or 1.84 | A1 |  |
|  | Regular | Q1ft | Strand (iii) <br> ft Conclusion based on their 2 values if M1 awarded |
|  | Alternative method 5 |  |  |
|  | $450 \div 600$ and $1.80 \div 2.45$ | M1 | oe |
|  | 0.75 and 0.73(...) | A1 |  |
|  | Regular | Q1ft | Strand (iii) <br> ft Conclusion based on their 2 values if M1 awarded |


| $\mathbf{Q}$ | Additional Guidance |
| :---: | :--- |
| $\mathbf{3}$ | Candidates can work in pounds or pence throughout providing that their final comparison is <br> based on the same units <br> If both of their answers are quoted to 1 sf or are the same (eg 0.4, 0.4) allow Q1 ft for regular. <br> Eg $180 \div 450=0.4$ <br> $245 \div 600=0.4$ <br> Regular <br> Award M1 A0 Q1 (Assume more d.p. on calculator) |


| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |


| 4 | $0.21 n+7.25=0.19 n+9.95$ | B1 | oe |
| :--- | :--- | :---: | :--- |
|  | $0.02 n=2.7(0)$ | M1 | Simplifying their linear equation to $a n=b$ <br> provided term in $n$ and constant on both <br> sides. |
|  | their $2.7(0) \div$ their 0.02 | M1 | Simplifying their linear equation to $n=$ |
|  | 135 | A1 | SC3 For 1.35 from an algebraic approach <br> (using 21n $+7.25=19 n+9.95)$ <br> SC2 For 135 from T\&I/numerical approach |


| Q | Additional Guidance | Mark |
| :--- | :--- | :--- |
| $\mathbf{4}$ | The middle two method marks are for simplifying their linear equation |  |
|  | Example |  |
|  | $0.21 n+7.25=0.19 n+9.95$ | B 1 |
|  | $0.02 n=17.2$ | M 0 |
|  | $n=17.2 \div 0.02$ | M 1 |
|  | $n=860$ | A 0 |
|  | T\&l methods are only awarded marks for a correct answer |  |

## Alternative method 1

| $42.9 \div 1.1$ or $57 \times 0.65$ | M1 |  |
| :--- | :---: | :--- |
| 39 or 37.05 | A1 |  |
| $42.9 \div 1.1$ and $57 \times 0.65$ | M1 | oe |
| 39 and 37.05 and Plane | A1 |  |

## Alternative method 2

| $57 \times 0.65$ | M1 |  |
| :--- | :---: | :--- |
| 37.05 | A1 |  |
| their $37.05 \times 1.1$ | M1 | Oe <br> their 37.05 must be from an attempt at a <br> percentage of 57 |


|  | 40.75(5) or 40.76 or 40 or 41 <br> and Plane | A1 |  |
| :--- | :--- | :--- | :--- |


| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |


| 6(a) | Correct polygon | B2 | B1 For one error - incorrect horizontal <br> point/incorrect height/ no straight lines |
| :---: | :--- | :---: | :---: |


| $\mathbf{Q}$ | Additional Guidance |
| :---: | :--- |
| $\mathbf{6 ( a )}$ | Ignore any lines before or after endpoints. <br> Consistent incorrect horizontal position is one error. |


| 6(b) | Plant B as there are 10 values in the <br> $10-12$ group whereas for Plant A there <br> is only one value | B1 | Oe <br> Allow 11 cm group to indicate $10-12$ <br> group |
| :---: | :--- | :---: | :--- |


| 7(a) | $\frac{9}{30}$ or $\frac{3}{10}$ or 0.3 or $30 \%$ | B1 |  |
| :---: | :--- | :---: | :--- |
| 7(b) | $\frac{63}{100}$ or 0.63 or $63 \%$ | B1 |  |
| 7(c) | Jake because he has done more <br> trials/more trials give a better estimate | B1 | oe |
| 7(d) | 185 or 177 | B1ft | ft The correct relative frequency for their <br> chosen person from (c) multiplied by 500 <br> or <br> 177 from $\frac{46}{130} \times 500$ |


| Q | Additional Guidance | Mark |
| :---: | :--- | :--- |
| 7(d) | If Ali is chosen in (c) then they should use $\frac{9}{30} \times 500=150$ | B1ft |
|  | Allow use of total of Ali and Jake |  |
|  | 185 out of 500 <br> $\frac{185}{500}$ | B1 |


| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

8 Alternative method 1

| $3 \times 8$ | M1 |  |
| :---: | :---: | :---: |
| $500 \div(16+3 \times 8)$ | M1 |  |
| (Small sack =) 12.5 (kg) | A1 |  |
| (Large sack = ) 37.5 (kg) | B1ft | ft their small sack $\times 3$ $\text { SC3 Small }=200, \text { large }=300$ |
| Alternative method 2 |  |  |
| $16 \div 3$ or $51 / 3$ | M1 |  |
| $500 \div(8+51 / 3)$ | M1 |  |
| Large 37.5 | A1 |  |
| Small 12.5 | B1 ft | ft their large sack $\div 3$ $\text { SC3 Small = 200, large = } 300$ |

## Alternative method 3

| Any trial using two values that satisfy <br> $16 x$ and $24 x$ | M1 |  |
| :--- | :---: | :--- |
| An improved trial using two values <br> that satisfy $16 x$ and $24 x$ | M1 | Totals must be seen |
| (Small sack $=$ ) $12.5(\mathrm{~kg})$ | A1 |  |
| (Large sack $=$ ) $37.5(\mathrm{~kg})$ | B1ft | ft their small sack $\times 3$ <br> SC3 Small $=200$, large $=300$ |


| $\mathbf{Q}$ | Additional Guidance |
| :--- | :--- |
| $\mathbf{8}$ | Alternative method 1 <br> 24 seen does not imply M1 as it may have come from $8+16$ <br> $16+24$ implies the first M1 <br> $500 \div 40$ is M2 |
|  | Alternative method 3 <br> eg Trying $x=4 \rightarrow 64+94=158 \mathrm{~kg}$ gains M1 <br> then trying $x=8 \rightarrow 128+192=320$ gains 2nd M1 (closer to total of 500) |


| $\mathbf{9 ( a )}$ | $[317,318]$ | B1 |  |
| :--- | :--- | :--- | :--- |
| $\mathbf{9 ( b )}$ | $5.34 \times 10^{24}$ | B2 | B1 For $5.338 \times 10^{24}$ |


| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |


| 10(a) | 9 | B1 |  |
| :---: | :---: | :---: | :---: |
| 10(b) | Alternative method 1 |  |  |
|  | Maths median $=33$ <br> and <br> French median $=24$ | B2 | B1 For one correct |
|  | Alternative method 2 |  |  |
|  | French median $=24$ and <br> More than half the students score higher than 24 in Maths so the median must be higher | B2 | oe <br> B1 For French median 24 with no explanation or incorrect explanation |
| 10(c) | 'only changes French' (2nd box) ticked or indicated | B1 |  |


| $\mathbf{Q}$ | Additional Guidance | Mark |
| :---: | :--- | :--- |
| $\mathbf{1 0 ( c )}$ | More than one box ticked | B0 |


| 10(d) | A set of 4 values fitting all criteria $\begin{array}{rl} \text { eg } 36404242 \\ 334141 & 41 \\ 3041 & 41 \end{array} 44$ | B3 | B2 A set of 4 values with mode 2 higher than the mean with median not 41. <br> Eg 41, 43, 46, 46 <br> B2 A set of 4 values with correct median but 2 modes or mode two lower than the mean <br> eg 39394343 (median 41 and mean <br> 41 is 2 above 39 but 2 below <br> 43 because two modes) <br> or <br> 40414150 <br> (median 41, mode 41, mean 43) <br> B1 Any set of 4 values with a median of 41 and any mode <br> eg 37414141 (median 41, mode 41, mean 40) <br> 27354747 <br> (median 41, mode 47, mean 39) |
| :---: | :---: | :---: | :---: |


| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |


| Q | Additional Guidance | Mark |
| :---: | :--- | :--- |
| $\mathbf{1 0 ( d )}$ | If 41 is the mode and appears twice then the two other numbers must <br> total 74 <br> eg 32414142 <br> 24414150 <br> Mark final answer. <br> If answer line blank mark the final set of 4 numbers in the working. | B3 |


| 11(a) | 32 | B1 |  |
| :---: | :---: | :---: | :---: |
| 11(b) | 39 or 24 seen | M1 |  |
|  | 15 | A1 |  |
| 11(c) | Median at 34 | B1 | $\pm 1 / 2 \mathrm{~s} \mathrm{~S}$ |
|  | Box from 27 to 38 | B1 | $\pm 1 / 2 \mathrm{~s} \mathrm{~s}$ |
|  | Whiskers 16 and 48 | B1 | $\pm 1 / 2 \mathrm{~s} \mathrm{~s}$ |
| 11(d) | Comparison using median value in context <br> eg Mary cycles further on average, Mary cycle 2 miles more on average | B1 | ft their median in part (a) |
|  | Comparison using Inter-quartile range <br> eg The distances Mary cycles are more consistent than John | B1 | ft their IQR in part (b) |


| $\mathbf{Q}$ | Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |


| 12 | Alternative method 1 |  |  |
| :---: | :---: | :---: | :---: |
|  | Get the same number of bottles <br> Shows method for any two shops eg getting 6 bottles <br> Two of <br> Shop A: pay $2+2$ <br> get $3+3$ <br> Shop B: pay $1.5+1.5+1.5$ <br> get $2+2+2$ <br> Shop C: pay $0.6 \times 6$ | M1 | Comparing number of bottles paid for when actually getting the same number of bottles |
|  | Two correct values eg getting 6 bottles Two of Shop A: pay for 4 <br> Shop B: pay for 4.5 <br> Shop C: pay for 3.6 | A1 |  |
|  | Shows method to compare equivalent number of bottles for the 3rd shop | M1 | Third method from those above |
|  | 3 rd correct answer and C is cheaper | A1 |  |


| Q | Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |


| 12 | Alternative method 2 |  |  |
| :---: | :---: | :---: | :---: |
|  | Pay for the same number of bottles <br> Shows method for any two shops eg paying for 6 bottles <br> Two of <br> Shop A: pay $2+2+2$ <br> get $3+3+3$ <br> Shop B: pay $1.5+1.5+1.5+1.5$ <br> get $2+2+2+2$ <br> Shop C: pay $6 \div 0.6$ | M1 | Comparing number of bottles got when paying for the same number of bottles. <br> Any multiple of 3 bottles can be used |
|  | Two correct values eg paying for 6 bottles <br> Two of <br> Shop A: get 9 <br> Shop B: get 8 <br> Shop C: get10 | A1 |  |
|  | Shows method to compare equivalent number of bottles for the 3rd shop | M1 | Third method from those above |
|  | 3rd correct answer and C is cheaper | A1 |  |


| Q | Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |


| 12 | Alternative method 3 |  |  |
| :---: | :---: | :---: | :---: |
|  | Choose an amount per bottle <br> Shows method for any two shops eg chooses £1 <br> Two of <br> Shop A: $2 \div 3$ <br> Shop B: $1.50 \div 2$ <br> Shop C: $1 \times 0.6$ | M1 | Comparing unit cost per bottle |
|  | Two correct values <br> eg chooses $£ 1$ <br> Two of <br> Shop A: 66p or 67p each <br> Shop B: 75p each <br> Shop C: 60p each | A1 |  |
|  | Shows method to compare equivalent amount for the 3rd shop | M1 | Third method from those above |
|  | 3 rd correct answer and C is cheaper | A1 |  |
| 12 | Alternative method 4 |  |  |
|  | Compares percentage discount ( $40 \%$ given for C) <br> Shop A: $\frac{1}{3} \times 100$ | M1 |  |
|  | 33(.3...)\% | A1 |  |
|  | Shop B: $\frac{0.5}{2} \times 100$ | M1 |  |
|  | 25\% and C is cheaper | A1 |  |


| Q | Additional Guidance |
| :---: | :--- |
| $\mathbf{1 2}$ | For the multiplying up scheme students can look at buying a particular number of bottles and <br> compare how many they pay for <br> or <br> Paying for a particular number of bottles and comparing how many bottles they actually get. |


| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |


| 13 | Alternative method 1 |  |  |
| :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & 2 m+3 h=9.3(0) \\ & \text { or } 5 m+2 h=10.6(0) \end{aligned}$ | B1 |  |
|  | $4 m+6 h=18.6$ and $15 m+6 h=31.8$ | M1 | oe equating coefficients of $h$ Allow one error in totals |
|  | $11 \mathrm{~m}=13.2$ | M1 | Subtracting |
|  | (Marmalade $=£$ ) 1.20 | A1 |  |
|  | $($ Honey $=$ £) 2.30 | A1 |  |
|  | $(1.2+4 \times 2.3)=10.4$ and No | Q1ft | their $1.2+4 \times$ their 2.3 compared with $£ 10$ and conclusion made QWC strand (ii) |
|  | Alternative method 2 |  |  |
|  | $\begin{aligned} & 2 m+3 h=9.3(0) \\ & \text { or } 5 m+2 h=10.6(0) \end{aligned}$ | B1 |  |
|  | $\begin{aligned} & 10 m+15 h=46.5 \text { and } \\ & 10 m+4 h=21.2(0) \end{aligned}$ | M1 | oe equating coefficients of $m$ Allow one error in totals |
|  | $11 \mathrm{~h}=25.3$ | M1 | subtracting |
|  | (Honey =)2.30 | A1 |  |
|  | $($ Marmalade $=$ ) 1.20 | A1 |  |
|  | $(1.2+4 \times 2.3)=10.4$ and No | Q1ft | their $1.2+4 \times$ their 2.3 compared with $£ 10$ and conclusion made QWC strand (ii) |


| Q | Additional Guidance |
| :---: | :--- |
| $\mathbf{1 3}$ | $\mathrm{T} \& \mathrm{I}$ method giving $\mathrm{M}=1.20$ and $\mathrm{H}=2.30$ is B 1 M 1 M 1 A 1 A 1. . No part marks. <br> Q1 ft can be gained from incorrect T \& I values. |


| 14 | $\left((1+2.75 /(100 \times 12))^{12}-1\right) \times 100$ | M1 |  |
| :---: | :--- | :---: | :--- |
|  | $1.0278(49 \ldots)$ or $0.0278(49 \ldots)$ seen | M1 | Implied by 2.78(\%) |
|  | $2.78(\%)$ and account 2 | A1 |  |


| Q | Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |


| 15 | $30 \times 65 \div 185$ <br> or <br> $30 \times 93 \div 185$ <br> or <br> $30 \times 27 \div 185$ <br> or correct decimal <br> $10.5(4 \ldots)$, or $15.0(8 \ldots)$, or $4.3(7 \ldots)$ | M1 | Correct method seen for one item or one <br> correct decimal seen |
| :---: | :--- | :---: | :--- |
|  | 11,15, and 4 | A2 | A1 For 1 correct value |


| 16(a) | $(60-30) \times 0.7$ or $(75-60) \times 1.8$ | M1 |  |
| :--- | :--- | :---: | :--- |
|  | 21 | A1 |  |
|  | 27 | A1 |  |


| Q | Additional Guidance |
| :---: | :--- |
| $\mathbf{1 6 ( a )}$ | One correct value with no working implies M1A1 |


| 16(b) | 0.8 or 0.3 seen | M1 |  |
| :---: | :---: | :---: | :---: |
|  | Both bars correct height and width (90-120 at height 0.8 and 120-180 at height 0.3) | A1 | One correct bar implies M1 |
| 16(c) | Alternative method 1 |  |  |
|  | $18 \times(180-130) / 60$ | M1 | oe |
|  | 15 | A1 | SC1 $18 \times 10 / 60=3$ |
|  | Alternative method 2 |  |  |
|  | $(180-130) \times$ their 0.3 | M1 | oe |
|  | 15 | A1ft | ft or correct <br> ft their freq density for $120-180$ SC1 $10 \times$ their $0.3=3$ |


| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |


| 17(a) | $6000 x+8000 y \leq 84000$ <br> or $6 x+8 y \leq 84$ | B1 |  |
| :---: | :--- | :--- | :--- |


| $\mathbf{Q}$ | Additional Guidance |
| :---: | :--- |
| $\mathbf{1 7 ( a )}$ | Only allow the 2 alternatives given. |


| $\mathbf{1 7 ( b )}$ | Correct area clearly indicated on the <br> graph | B1 |  |
| :--- | :--- | :--- | :--- |


| Q | Additional Guidance |
| :---: | :--- |
| $\mathbf{1 7 ( b )}$ | Accept area shaded in or shaded out |


| $\mathbf{1 7}(\mathbf{c )}$ | Trial of any integer point at or close to <br> a vertex of the region | M1 | Allow points on dotted line. |
| :--- | :--- | :---: | :--- |
|  | 10 small cars, 3 medium cars, | A1 |  |
|  | 272 | A1 | SC2 For 11 small, 2 medium and 268 |


| Q | Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |


| 18 | Alternative method 1 |  |  |
| :---: | :---: | :---: | :---: |
|  | 18.5 or 18.49 or 12.5 or 12.49 | B1 |  |
|  | 45 or 44.9 | B1 |  |
|  | their $18.5 \times$ their 12.5 or 231.25 | M1 | their upper bounds multiplied |
|  | their $231.25 \times$ their 45 or 10406.25 | M1 | Multiplying by their upper bound for fertiliser |
|  | 10.4(06.25) (kg) and No | A1 | Allow $10406(.25)$ if $10 \mathrm{~kg}=10000 \mathrm{~g}$ seen. |
|  | Alternative method 2 |  |  |
|  | 18.5 or 18.49 or 12.5 or 12.49 | B1 |  |
|  | 45 or 44.9 | B1 |  |
|  | their $18.5 \times$ their 12.5 or 231.25 | M1 | their upper bounds multiplied |
|  | $10000 \div$ their 45 or 222.2 | M1 | Dividing by their upper bound for fertiliser or $10000 \div$ their 231.25 or 43.243 |
|  | 231(.25) and 222(.2...) and No | A1 | 43(243..) and 45 and No |

Copyright © 2014 AQA and its licensors. All rights reserved.
AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

