GCSE Mathematics

93701H Applications of Mathematics
Unit 1: Higher Tier
Mark scheme

93701H

June 2016

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

M	Method marks are awarded for a correct method which could lead to a correct answer.
A	Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.
B	Marks awarded independent of method.
ft	Follow through marks. Marks awarded for correct working following a mistake in an earlier step.
SC	Special case. Marks awarded within the scheme for a common misinterpretation which has some mathematical worth.
A method mark dependent on a previous method mark being	
awarded.	

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a candidate has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the candidate. In cases where there is no doubt that the answer has come from incorrect working then the candidate should be penalised.

Questions which ask candidates to show working

Instructions on marking will be given but usually marks are not awarded to candidates who show no working.

Questions which do not ask candidates to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Candidates often copy values from a question incorrectly. If the examiner thinks that the candidate has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the candidate intended it to be a decimal point.

Q	Answer	Mark	Comments
1(a)	18	B1	
1(b)	$52-28+6$ or $52-22$	M1	
	30	A1	
	Additional Guidance		
	If answer does not appear in 1 b check table. 30 in Leeds gains M1A1 Calculations can be done in any order or in steps. $\begin{aligned} & \text { eg } 52+6=58,58-28 \mathrm{M} 1 \\ & \text { eg } 52+6=56,56-28 \text { gains M1 } \end{aligned}$ Answer 30 with no working gains M1A1		

Alternative method 1

3500×1.65 or 5775 or 3500×0.65 or 2275	M1	
their $5775-(3500+750)$ or (their $2275+3500)-(3500+750)$ or their $2275-750$	M1	oe eg $5775-4250$
1525	A1	

Additional Guidance

To award the 2nd M1 it must be clear that they have attempted to find either 65\% or 165% of 3500
If they work with 165% they must subtract both 3500 and 750
If they work with 65% they must only subtract 750
Penalise further working as incorrect method.
eg $0.65 \times 3500=2275$ M1
$2275-750=1525$
$3500+1525=5025$ MOAO

\mathbf{Q}	Answer	Mark	Comments

3	7, 7, 7, 9, (10)	B2	B1 for finding the mean of any five integers between 7 and 10 inclusive or B1 for finding the median of any five integers between 7 and 10 inclusive or B1 7 (median) and $8 \times 5=40$ or 8 (median) and $9 \times 5=45$
	Additional Guidance		
	The median can be shown by listing their 5 numbers in order and either circling the middle number or crossing off 2 either side to leave the middle number. All numbers used must be integers.		

Q	Answer	Mark	Comments

\mathbf{Q}	Answer	Mark	Comments

Alternative Method 1

$\frac{2}{3}-\frac{1}{2}$ or $\frac{1}{6}$	M1	oe
their $\frac{1}{6}$ is 5 or 6×5 or $5 \div$ their $\frac{1}{6}$	M1dep	
30	A1	

Alternative Method 2

$0.66(\ldots)-0.5 \text { or } 0.16(\ldots)$ or $66 \%-50 \% \text { or } 16 .(\ldots) \%$	M1	
```5\divtheir 0.16(...) or 5 % their 16.(..) ( }\times100 or 100\divtheir 16.(..) \times 5```	M1dep	
30	A1	
Alternative Method 3		
Trial and improvement   First trial using both fractions $\frac{2}{3}$ and $\frac{1}{2}$ of any distance greater than 5 km	M1	
finds the difference between their two values	M1dep	(Trying to get a difference of 5)
30	A1	


| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |


5 (cont)	Alternative Method 4		
	$\frac{1}{2} x+5=\frac{2}{3} x$	M1	
	$1.5 x+15=2 x$   or $0.5 x=15$   or $3 x+30=4 x$   or $\frac{1}{6} x=5$	M1dep	
	30	A1	
	Additional Gu		
	For Alt 2 allow (use of 0.66 or	for both   1.25)	method marks but must be 30 for


$\mathbf{6}$ 6(a)	$0.3 \times 30$	M1	
	9	A 1	$\mathrm{SC} 1 \frac{9}{30}$



7(a)	C	B1	Circled or indicated
	Additional Guidance		


7(b)	A	B1	Circled or indicated
	Additional Guidance		


| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |


Alternative method 1		
1.03 seen	M1	
$1750 \times 1.03^{4}$	M1	
1969.64	A1	Must be correct money notation (2dp) Allow 1970 from correct method
Alternative method 2		
$1750+(1750 \times 0.03)$ or $1802.5(0)$	M1	Year 1 total   Equivalent to using 1.03 once
$\begin{aligned} & {[1856.57,1856.58]} \\ & \text { and } \\ & {[1912.26,1912.28]} \\ & \text { or } \\ & 52.5(0)(+) 54.08(+) 55.7(0)(+) 57.37 \end{aligned}$	M1	Year 2 and year 3 totals or Calculating interest for each of the 4 years $1750+52.5(0)+54.08+55.70+57.37$   implies M2
[1969.62, 1969.65]	A1	Must be correct money notation (2dp) Allow 1970 from correct method
Additional Guidance		
Calculating amounts each year gains a method mark for a complete year 1 total. The 2nd method mark is only awarded if the interest is found for the next 2 years Use of simple interest will only gain credit if the first year interest is added on to the investment to give 1802.5(0)		


Q Answer Mark Comments   9(a) $158<h \leqslant 164$   or   $164 \geq h>158$ Q2 Q1 for $158 \leqslant h \leqslant 164$   or for $158<h<164$   or $158<h$ and $h \leqslant 164$    Additional Guidance Allow all reversed eg $164 \geq h \geq 158$ Q1   Allow any other letter for $h$   Ignore units



$\mathbf{Q}$	Answer	Mark	Comments


10(a)	Median line drawn at 38	B1	$\pm 1 / 2$ square
	Quartiles drawn at 33.5 and 42 and box drawn.	B1	$\pm 1 / 2$ square
	Whiskers drawn from the box to 26 and 54	B1	$\pm 1 / 2$ square
	Additional Guidance		
	For whiskers, lines on ends do not need to be drawn   The box can be any height   Some students may also draw a box plot when answering 10b. Ignore this box plot when marking 10a		


| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

## Alternative method 1

States their 2015 median and makes a comparison in context
eg The median was 38 in 2015 so the
2015 times were quicker (on average) (due to lower median)
eg the median in 2015 was one minute less than 2014 so 2015 times were quicker

Works out both IQR's and compares		oe ft 10(a)
consistency		

consistency
2014 interquartile range $=13$
2015 interquartile range = their upper quartile - their lower quartile
and
2015 times are more consistent (due to lower IQR)

Alternative method 2 (adds a boxplot for 2014)

B1 states their 2015 median (with no comparison or incorrect comparison)
or B1 incorrect reading of their median with correct comparison
eg plots the median at 38 but reads as 36 and states that the times in 2015 were faster
ft their boxplot
oe
B1 correct IQR's ft their box plot
or
B1 incorrect readings used for 2015 IQR with correct comparison -must use correct method for 2014 IQR ie. 13 seen or $45-32$

Boxplot drawn for 2014 and median indicated as higher in 2014 or lower in 2015 and
2015 times were quicker (on average) (due to lower median)

Both quartiles marked on the boxplot for 2014 and states box smaller/narrower in 2015
2015 times are more consistent (due to lower IQR)

## ft their 10a boxplot

B2ft
 -

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |



$\mathbf{4 1 ( a )}$	$(56+62+44) \div 3$ or $162 \div 3$	M1	
	54	A1	
	Additional Guidance		
	$56+62+44 \div 3$ with incorrect answer is M0		


$\mathbf{1 1 ( b )}$	$57 \times 3$ or 171	M1	
	their $171-(44+59)$	M1	Allow their $171-(48+59)$
	68	A1	
	Additional Guidance		
	Check table for answer if no answer given in 11b   Using 48 instead of 44 can gain M1M1A0 (answer 64)		



12(b)	$8.5 \times 10^{7} \div 1.4 \times 10^{6}$   or $1.9 \times 10^{8} \div 1.5 \times 10^{6}$	M1	
	60.7(14...) and [126.66,126.7]	A2	A1 for one correct Allow 61 and 126 or 127 from correct method
	63.(33) and 60.(71) and Yes or [2.08,2.1] and Yes or 60.(71) and 65.95 or 66 and Yes or 121.(43) or 121.(42) and 126.(66) and Yes	Q1ft	QWC strand (iii) for correct conclusion for their values if M1 gained   Allow 122 from 61 used
	Additional Guidance		
	Allow rounding to nearest integer for all comparisons except the division leading to 2.08 Yes can be implied eg $63>60$		


$\mathbf{Q}$	Answer	Mark	Comments

## Alternative Method 1

$t=\frac{4}{7} c$ or $10 c+6 t=20.68$	M 1	
$10 c+6 \times \frac{4}{7} c=20.68$	M 1	
$\frac{94}{7} c=20.68$	M 1	oe
their $20.68 \times \frac{7}{94}$ or 1.54	M 1	oe
$(t=) £ 0.88$ or 88 p	A 1	0.88 with no units is M4 A0

Alternative Method 2

$t=\frac{4}{7} c$ or $10 c+6 t=20.68$	M 1	
$c=\frac{7}{4} t$	M 1	
$10 \times \frac{7}{4} t+6 t=20.68$	M 1	
$\frac{94}{4} t=20.68$	M 1	
$(t=) £ 0.88$ or 88p	M1	
Alternative Method 3	M1	oe
$\frac{4}{7} \times 6$ or $\frac{24}{7}$	M1 or 88 with no units is M4 A0	
$10+\frac{24}{7}$ or $\frac{94}{7}$	M1	
$20.68 \div 94(\times 7)$		
or		
$20.68 \div 94(\times 4)$	A1	0.88 or 88 with no units is M4 A0
$0.22(\times 4)$ or $1.54(\div 4)$		
$£ 0.88$ or 88 p		


| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |



Q	Answer	Mark	Comments
13 (cont)	( $t=$ ) £0.88 or 88p	A1	0.88 or 88 with no units is M4 A0
	Additional Guidance		
	Accept any letters for $t$ and $c$   Trying $c=1.54$ and $t=88$ at any point and then selecting this as their answer gains all 5 marks   All attempts must give correct monetary costs for tea and coffee.   For example coffee costs $£ 1$ gives tea costs 57.14pence M0   Allow working in pence throughout eg 2068 but final answer must have correct units		


| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |


	Alternative Method 1		
	1067.5	B1	Condone 1067.499999
	179.5	B1	Condone 179.499999
	their 1067.5 + their 179.5	M1	their upper bounds must be $>1065$ and $>179$
	1247 and No	A1	
14	Alternative Method 2		
	1067.5	B1	Condone 1067.499999
	1245 - their 1067.5	M1	their 1067.5 must be their upper bound. It cannot be 1065
	177.5	A1	
	No 178.5 is the lightest Kate can be or   No 179 is greater than 178 to nearest pound	B1ft	ft their upper bound if M1 scored
	Additional Guidance		
	Examples of ft eg 1 uses $1069.5 \rightarrow$ answer of 179.1 c eg 2 Uses $1065.5 \rightarrow$ answer 179.5 con		as Kate could be 179.5   as max Kate can be is 179.5


15(a)	3.6 or 0.4 seen	M1	Implied by one correct height
	bars drawn height 3.6 for $80-85$ and $0.4 \text { for } 85-100$	A1	
	Additional Guidance		
	One bar at correct height and width implies M1 A0		


$\mathbf{Q}$	Answer	Mark	Comments


15(b)	Supermarket: $\frac{2}{10} \times 30+18+6$   or $2 \times 3+18+6$   or $6+18+6$	M1	
	30	A1	
	Street stall:   $(2 \times 3.5)$ or $(5 \times 4)$ or $(15 \times 0.6)$ or 7 or 20 or 9	M1	oe eg works in $\mathrm{cm}^{2}$   $1 \mathrm{~cm}^{2}=2.5$   Values may be written on the bars
	$\begin{aligned} & (2 \times 3.5)+(5 \times 4)+(15 \times 0.6) \\ & \text { or } 7+20+9 \text { or } 36 \end{aligned}$	M1	$14.4 \times 2.5$ or 36
	6	A1	
	Additional Guidance		
	For the 2nd histogram allow use of any equivalent divisions $\mathrm{eg} \mathrm{cm}^{2}$, line of 5		


$\mathbf{1 6 ( a )}$	$s=$ the number of boxes of Supreme   $d=$ the number of boxes of Dazzle	B1	Allow 'amount' for 'number'
	Additional Guidance		


$\mathbf{1 6 ( b )}$	$d+s \leqslant 20$	B 1	oe
	Additional Guidance		


Q	Answer	Mark	Comments
16(c)	$d+s=20$ drawn   and   $d=2 s$ drawn   and   Correct region shown by shading	B3	B2 $d+s=20$ drawn   and   $d=2 s$ drawn   with no shading or incorrect shading   B1 $d+s=20$ drawn   or   $d=2 s$ drawn
	Additional Guidance		
	May shade the region or the outside of the region		


16(d)	Trial of any integer point in the region close to the intersection with correct profit for $d$ and $s$	M1	Must have a clear enclosed region $\begin{aligned} & (0,20) \rightarrow £ 16 \\ & (6,13) \rightarrow £ 17 \\ & (6,14) \rightarrow £ 17.8(0) \end{aligned}$
	$s=6, d=14$, profit $=£ 17.80$	A2	A1 for $s=6, d=14$ Correct money notation
	Additional Guidance		
	Must have drawn 2 lines on the graph and used shading to indicate their region Condone 6.60 and 11.20 on answer lines for 6 and 14 if 6 and 14 seen in working Answers of 6, 14 and 17.8 is M1A1A0		


$\mathbf{Q}$	Answer	Mark	Comments

## Alternative Method 1

$(125000$ at $0 \%) 125000 \times 1.02$ or   127500	M1	
$315500-$ (their $127500+125000$ )	M1	oe eg $315500-250000-2500$
$(£) 63000$	A1	
their $63000 \div 1.05$ or 60000	M1	
$125000+125000 ~+~ t h e i r ~$   60000   or $315500-$ (their $3000+$ their 2500$)$	M1dep	their 3000 is their $63000-$ their 60000   and their 2500 is $2 \%$ of 125000
(£) 310000	A1	

## Alternative Method 2

17

$x+(0.02 \times 125000)$   or   $0.05(x-250000)$	M1	
$x+(0.02 \times 125000)$   $+0.05(x-250000)$   $(=315500)$	M1	implies first M1
$x+2500+0.05 x-12500=315500$	M1	implies previous M2
$1.05 x=325500$	M1	
$x=325500 \div 1.05$	M1dep	
(£) 310000	A1	

## Additional Guidance

Common incorrect method
$315500-250000=65500$
$125000 \times 0.02=2500$
$65500 \times 0.05=3275$
$315500-(3275+2500)=309725 \quad$ MOMOAOMOMOAO

