GCSE
 Mathematics

93701F Applications of Mathematics
Unit 1: Foundation Tier
Mark scheme

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

M	Method marks are awarded for a correct method which could lead to a correct answer.		
A	Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.		
B	Marks awarded independent of method.		
ft	Follow through marks. Marks awarded for correct working following a mistake in an earlier step.		
SC	Special case. Marks awarded within the scheme for a common misinterpretation which has some mathematical worth.		
M method mark dependent on a previous method mark being			
awarded.		\quad	A mark that can only be awarded if a previous independent mark
:---			
has been awarded.			

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a candidate has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the candidate. In cases where there is no doubt that the answer has come from incorrect working then the candidate should be penalised.

Questions which ask candidates to show working

Instructions on marking will be given but usually marks are not awarded to candidates who show no working.

Questions which do not ask candidates to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Candidates often copy values from a question incorrectly. If the examiner thinks that the candidate has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the candidate intended it to be a decimal point.

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

$\mathbf{1 (a)}$	Tallies correct including use of 5 bar gates	B1	
	Frequencies correct $7,9,6,2$ or ft their tallies	B1ft	ft their frequencies or correct

$\mathbf{1}$	1	B 1 ft	ft their frequencies
	Additional Guidance	If their frequencies give two modes they must state both	
	They may use the original data to find the mode so a correct mode of 1 gains B1 even if the table frequencies suggest a different mode		

	Vertical line graph used	B1	Single vertical line for each number of goals
	Heights correct 7, 9, 6, 2 must be correct horizontal position	B1ft	ft their frequencies
	Additional Guidance	A correct bar chart scores B0B1 Plots at correct horizontal position with correct height with no vertical lines drawn B0 B1 A frequency polygon with correct heights B0 B1	

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

Alternative Method 1

Crosses off the same value of coins for both	M1	Implied by $14 p$
their $14(p) \div 2$ or attempts to share the $5 p$ and $2 p$ coins	M1dep	
$5(p)$ and 2(p)	A1	

Alternative Method 2

Jack has 95p or Rosie has 81p	M1	Implied by 14 p
(their 95 - their 81) $\div 2$		
or	M1dep	
their $14 \div 2$		
or		
7 (p)		
5(p) and 2(p)	A1	

Alternative Method 3

Attempts to total all coins and divide by 2 or 88 seen	M1	
Their total of Jacks coins - their 88 or their 88 - their total of Rosies coins or $7(p)$	M1dep	
5 (p) and 2(p)	A1 crosses off 88p from Jacks coins	

Additional Guidance

Check diagram for working
7(p) Implies M1 M1

Q	Answer	Mark	Comments
3(a)	evens	B1	Circled or indicated
	Additional Guidance		
	If more than one word chosen B0		

3(b)	impossible	B1	Circled or indicated
	Additional Guidance		
	If more than one word chosen B0		

3	Arrow pointing to 3rd mark from zero 3(c) (3/8)	Additional Guidance	
	Accept any clear indication, eg line drawn, eg arrow drawn pointing away from the line (either upwards above or downwards below). Ignore any numbers marked on the line. Award the mark for an intention to place the arrow at the correct position and not elsewhere on the line.		

Q	Answer	Mark	Comments
4(a)	16	B1	Accept in words
	Additional Guidance		
	Check the table if answer space blank		

Alternative Method 1

Frequencies: $14(+) 16(+) 7(+) 3$	M1	Condone 1 error
$14+16+7+3=40$	A1	

4(b) Alternative Method 2

$8 \times 4(+) 2 \times 3(+) 2$	M1	oe
$32+6+2=40$	A1	

Additional Guidance

Alternate ways of combining could be $\frac{3}{4}+\frac{3}{4}=1 \frac{1}{2}, 1 \frac{1}{2}+\frac{1}{2}=2,10$ full circles $=10 \times 4=40$

4(c)	$\frac{7}{20}$	B2	B1 for $\frac{14}{40}$ or 35% or 0.35

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

Alternative Method 1

$420 \div 4$ or 105	M1	
$(420-$ their 105$) \times \frac{2}{5}$ or 126	M1	
$420-$ their $105-$ their 126 or $315-$ their 126	M1	$420 \times \frac{3}{4} \times \frac{3}{5}$ implies M3
189	A1	

Alternative Method 2

5

$420 \div 4$ or 105	M1	
$\frac{3}{5}$ seen	M1	
$(420-$ their 105$) \times \frac{3}{5}$	M1	$420 \times \frac{3}{4} \times \frac{3}{5}$ implies M3
189	A1	

Additional Guidance

Some students will find $1 / 4$ of $£ 420$, and $2 / 5$ of $£ 420$ and subtract these values from $£ 420$. These are treated as MR
$420 \div 4=105,420 \times 2 \div 5=168,420-105-168=147$ M1 M1 M1 A0

$\mathbf{6} \mathbf{6 (a)}$	$1.15+0.75+0.75+0.25$	M1	oe
	(£) 2.90	A1	2.9 or 290 implies M1 Condone (£) 2.90p
	Additional Guidance	Penalise incorrect money notation only once	

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

6(b)	(£) 2.10	B1ft	ft their (a) Do not penalise 2.1 if 2.9 penalised in part (a)

6(c)	Alternative Method 1		
	Correct total for 3 items involving any combination of cones and tubs	B1	3 cones $£ 3.75$ 2 cones 1 tub $£ 3.65$ 1 cone 2 tubs $£ 3.55$ 3 tubs $£ 3.45$
	6.65 - their total	M1	their total must be for 3 items but may include extra scoops
	Remaining money $\div 75$ (p)	M1	oe
	4 (extra scoops)	A1	must come from using 2 cones and 1 tub
	Alternative Method 2		
	Correct total for 3 items involving any combination of cones and tubs	B1	3 cones $£ 3.75$ 2 cones 1 tub $£ 3.65$ 1 cone 2 tubs $£ 3.55$ 3 tubs $£ 3.45$
	Adds on at least 75p to their total	M1	their total must be for 3 items
	Adds on 75p's to get a total of at least £6	M1	
	4 (extra scoops)	A1	must come from using 2 cones and 1 tub
	Additional Guidance		
	Unsupported answer of 4 gets BO MO MO A0		

$\mathbf{7 (a)}$	$20+38 \times 3.5$	M1	oe
	153	A1	

Q	Answer	Mark	Comments
9(a)	$\frac{12}{72} \times 360$ or 12×5 or $\frac{18}{72} \times 360$ or 18×5 or $\frac{27}{72} \times 360$ or 27×5 or $\frac{15}{72} \times 360$ or 15×5	M1	Correct method to find one angle Implied by one correct angle seen
	60, 90,135 and 75	A1	All 4 correct angles
	Draws all 4 correct angles accurately	A1	$\pm 2^{\circ}$
	Labelled in correct proportional size	B1ft	ft if only 4 sectors
	Additional Guidance		
	Correct proportional size means that thriller must be the largest sector, then comedy, sci-fi and romance. Accept letters R, S, C, T for labels		

\mathbf{Q}	Answer	Mark	Comments

9(b)	Alternative method 1		
	140 seen	B1	
	$\frac{\text { their140 }}{360} \times 72$ or their $140 \div 5$ or 28	M1	
	their 28-12	M1	Condone their 28-15
	16	A1	
	Alternative method 2		
	140 seen	B1	
	their 140 - their 60 or 80	M1	
	$\frac{\text { their } 80}{360} \times 72$ or $80 \div 5$	M1	
	16	A1	
	Additional Guidance		
	Check the diagram for 140 In alt 2 their 60 is their angle for Romance from part (a). Must be consistently working with angles or people, not a combination of both. eg in alt 1 their 28 cannot be 140, it must be from an attempt to work with people.		

\mathbf{Q}	Answer	Mark	Comments

Alternative method 1

$4.60 \div 1.27$	M1	
$3.62(2 \ldots)$	A1	
12	A1	

Alternative method 2

10

$4.60-3.5 \times 1.27$	M1	
0.155 euros	A1	Accept 0.15 or 0.16
$(0.155 \ldots \div 1.27=0.122 \ldots)$ 12	A1	
Additional Guidance		
After correct working answers of 0.12 gains M1 M1 A0 £0.12 gains M1 M1 A1		

Q	Answer	Mark	Comments
11(a)	18	B1	
	Additional Guidance		
11(b)	$52-28+6$ or 52-22	M1	
	30	A1	
	Additional Guidance		
	If answer does not appear in 1 b check table. 30 in Leeds gains M1A1 Calculations can be done in any order or in steps. $\begin{aligned} & \text { eg } 52+6=58,58-28 \mathrm{M} 1 \\ & \text { eg } 52+6=56,56-28 \text { gains M1 } \end{aligned}$ Answer 30 with no working gains M1A1		

12	Alternative method 1		
	$\begin{aligned} & 3500 \times 1.65 \text { or } 5775 \\ & \text { or } \\ & 3500 \times 0.65 \text { or } 2275 \end{aligned}$	M1	
	their $5775-(3500+750)$ or (their $2275+3500)-(3500+750)$ or their 2275-750	M1	oe eg 5775-4250
	1525	A1	
	Additional Guidance		
	To award the 2nd M1 it must be clear that they have attempted to find either 65% or 165% of 3500 If they work with 165% they must subtract both 3500 and 750 If they work with 65% they must only subtract 750 Penalise further working as incorrect method. $\begin{aligned} & \text { eg } 0.65 \times 3500=2275 \quad \text { M1 } \\ & 2275-750=1525 \\ & 3500+1525=5025 \text { MOAO } \end{aligned}$		

Q	Answer	Mark	Comments
13	7, 7, 7, 9, (10)	B2	B1 for finding the mean of any five integers between 7 and 10 inclusive or B1 for finding the median of any five integers between 7 and 10 inclusive or B1 7 (median) and $8 \times 5=40$ or 8 (median) and $9 \times 5=45$
	Additional Guidance		
	The median can be shown by listing their 5 numbers in order and either circling the middle number or crossing off 2 either side to leave the middle number. All numbers used must be integers.		

\mathbf{Q}	Answer	Mark	Comments

Alternative Method 1

$\frac{2}{3}-\frac{1}{2}$ or $\frac{1}{6}$	M1	oe
Their $\frac{1}{6}$ is 5 or 6×5 or $5 \div$ their $\frac{1}{6}$	M1 dep	
30	A1	

Alternative Method 2
\(\left.$$
\begin{array}{|l|c|l|}\hline \begin{array}{l}0.66(\ldots)-0.5 \text { or } 0.16(\ldots) \\
\text { or } \\
66 \%-50 \% \text { or } 16 .(\ldots) \%\end{array} & \text { M1 } & \\
\hline \begin{array}{l}5 \div \text { their } 0.16(\ldots) \\
\text { or } \\
5 \div \text { their } 16 .(. .) ~ \\
\text { or }\end{array}
$$ \& \&

100 \div their 16 .(. .) \times 5\end{array}\right)\) M1dep | |
| :--- |
| 30 |

Alternative Method 3

Trial and improvement First trial using both fractions $\frac{2}{3}$ and $\frac{1}{2}$ of any distance greater than 5 km	M1	
finds the difference between their two values	M1 dep	(Trying to get a difference of 5)
30	A1	

\mathbf{Q}	Answer	Mark	Comments

15 (cont)	Alternative Method 4		
	$\frac{1}{2} x+5=\frac{2}{3} x$	M1	
	$1.5 x+15=2 x$ or $0.5 x=15$ or $3 x+30=4 x$ or $\frac{1}{6} x=5$	M1dep	
	30	A1	
	Additional Gu		
	Allow use of 0 (use of 0.66 or	method 1.25)	marks but must be 30 for A1

16(a)	0.3×30	M1	
	9	A1	
	Additional Guidance		
	Beware of 9 from incorrect method eg $10 \times 0.4+10 \times 0.25+10 \times 0.3=4+2.5+3=9.5$ answer 9 MOAO Do not award M1 for 0.3×30 if it is added to other values		

17(a)	C	B1	Circled or indicated
17(b) A B1 Circled or indicated			

Alternative Method 1

$19650-10110$ or 9540	M1	
their $9540 \times 0.2(\div 12)$ or 1908	M1 dep	oe
159	A1	SC1: 496

Alternative Method 2

$19650 \div 12$ or $1637.5(0)$ and $10110 \div 12$ or $842.5(0)$	M1	
$0.2 \times($ their $1637.5(0)-842.5(0))$ or 1908	M1 dep	oe
159	A1	
Additional Guidance		
SC is from $0.2 \times(19650+10110)$		

\mathbf{Q}	Answer	Mark	Comments

19(b)	$x+3$ or $x-2$ seen	B1	
	$x+$ their $(x+3)+$ their $(x-2)=43$	M1	oe must be linear expressions with 3 terms in x
	$\begin{aligned} & 3 x=42 \\ & 3 x+1=43 \end{aligned}$	M1	Simplifying their linear equation to $a x=b$ or by collecting like terms on the left
	Sita 14, Teri 17 and Ellen 12	A1	
	Logical algebraic argument with key steps shown including final answers	Q1	QWC strand (iii) Must gain both method marks and give a solution SC3 for 14,17 and 12 from T \& I or numerical method
	Additional Guidance		
	The B1 for a correct expression cannot be awarded with SC3 Omitting Sita gives the following their $(x+3)+$ their $(x-2)=43$ $2 x=42$ $x=21$ Answers 21, 24 and 19 B1M0M1A0Q0 Example of incorrect expression used Uses $3 x$ for Teri $\begin{aligned} & x+3 x+x-2=43 \\ & 5 x-2=43 \\ & 5 x=45 \end{aligned}$ Answer $9,27,7$ or $9,12,7 \quad$ B1M1M1A0Q1		

