

GCSE

Methods in Mathematics (Linked Pair)

Higher Tier Unit 2 Geometry and Algebra Mark scheme

9365 November 2016

Version/Stage: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aga.org.uk

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

Method marks are awarded for a correct method which could lead

to a correct answer.

M dep A method mark dependent on a previous method mark being

awarded.

A Accuracy marks are awarded when following on from a correct

method. It is not necessary to always see the method. This can be

implied.

B Marks awarded independent of method.

B dep A mark that can only be awarded if a previous independent mark

has been awarded.

Q Marks awarded for quality of written communication.

ft Follow through marks. Marks awarded for correct working

following a mistake in an earlier step.

SC Special case. Marks awarded for a common misinterpretation

which has some mathematical worth.

oe Or equivalent. Accept answers that are equivalent.

eg accept 0.5 as well as $\frac{1}{2}$

[a, b] Accept values between a and b inclusive.

25.3... Allow answers which begin 25.3 e.g. 25.3, 25.31, 25.378.

Use of brackets It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a candidate has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the candidate. In cases where there is no doubt that the answer has come from incorrect working then the candidate should be penalised.

Questions which ask candidates to show working

Instructions on marking will be given but usually marks are not awarded to candidates who show no working.

Questions which do not ask candidates to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Candidates often copy values from a question incorrectly. If the examiner thinks that the candidate has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the candidate intended it to be a decimal point.

Q	Answer	Mark	Comments	
	Alternative method 1			
	$6 \times 6 \times \pi$	M1	oe	
	36π or [113, 113.112]	A1		
	mm ²	B1		
1	Alternative method 2			
	$0.6 \times 0.6 \times \pi$	M1	oe	
	0.36π or [1.13, 1.13112]	A1		
	cm ²	B1		
	1			
	Alternative method 1			
	0.37 or 1.37 seen	M1	oe	
	460 \times their 1.37 or 460 \times their 0.37 or 170.2	M1	ое	
	630.2	A1		
2	Alternative method 2			
	10% = 46, 1% = 4.6	M1	Any valid percentage stated, eg 5% = 23	
	460 + 3 × Their 10% + 7 × their 1%	M1	Any valid combination, eg 460 + 4 × their 10% – 3 × their 1%	
	630.2	A1		
3 (a)	They are alternate angles	B1		
		T		
3 (b)	a + b = 180	B1		

Q	Answer	Mark	Comments		
4 (a)	60	B1			
		I			
	Any product, or division, of 210 that involves a prime number, eg 2 \times 105, 5 \times 42, 210 ÷ 7 = 30 etc	M1			
	$2 \times 3 \times 5 \times 7$	A1			
	Additional Guidance				
4 (b) Product may be implied for M1 by a prime factor tree, or values written as pairs, e					
	Do not award M1 if there is a clear indic	ation of m	isunderstanding, eg		

B2 correct translation.
B1 a translation of $\begin{pmatrix} -4 \\ 3 \end{pmatrix}$ B1 a translation of $\begin{pmatrix} 3 \\ a \end{pmatrix}$, $a \neq -4$ B1 a translation of $\begin{pmatrix} b \\ -4 \end{pmatrix}$, $b \neq 3$ ie correct shape in correct orientation in the light grey areas.

Q	Answer	Mark	Comments	s
	5 and 4.5	B1	oe	
	18 \times their 5 \times their 5 or 20 \times their 4.5 \times their 4.5	M1	their 5 or 4.5 must come fro	m 20 ÷ 4 or 18 ÷
	450 and 405	A1		
	Correct conclusion based on their volumes if one volume correct.	Q1ft	Strand (iii) ft their volumes.	
	Additional Guidance			
	Volume A = $18 \times 4 \times 4$ Volume B = $20 \times 4.5 \times 4.5$ A = 288 and B = 405			B0 M1 A1
6	B has the greater volume			Q1
	Volume A = $18 \times 5 \times 5$ Volume B = $20 \times 4.5 \times 4.5$			B1 M1
	A = 180 and B = 405			A0
	B has the greater volume			Q1
	Volume A = $18 \times 5 \times 5$			B1
	Volume B = $30 \times 4.5 \times 4.5$		Take 30 as misread.	M1
	A = 450 and B = 607.5		Loses A mark.	A0
	B has the greater volume			Q1
	Volume A = $18 \times 5 \times 5$			B1
	Volume B = $20 \times 4.5 \times 4.5$		Correct conclusion but	M1
	A = 180 and B = 180		neither volume correct	A0
<u> </u>	Volumes same			Q0
	×			
-	$\frac{x}{2} = -1 \text{ or } x + 10 = 8$	M1		
7	-2	A1	SC1 3 from $x + 5 = 8$ SC1 -6 from $x + 10 = 4$	
8	5n + 4	B2	Do not accept $n5$, but $n5 + 81$ for $5n$ Accept $5 \times n$ or $n \times 5$	4 scores B1

Q	Answer	Mark	Comments		
		T			
	$6x^2 + 15x - 4x - 10$	M1	Allow one sign or arithmetic error but must have 4 terms. One in x^2 , two in x and a constant term.		
	$6x^2 + 11x - 10$	A1			
	Additional Guidance				
9	6x + 15x - 4x - 10 $16x - 10$	M0, A0			
	$6x^2 + 15x + 4x - 10$ $6x^2 + 19x - 10$	M1, A0			
	$5x^2 + 15x + 4x - 10$ $5x^2 + 19x - 10$	M0, A0			

Q	Answer	Mark	Comme	ents
	3x - 3 = x + 4	M1		
	2x = 7	A1		
	(x =) 3.5	A1ft	ft their equation if of the f is not -3 , 3 or 4 or of the form $bx = 7$ when	
	(Side =) their $x + 4$ or 7.5 or 56.25	A1ft	ft their $x + 4$ only if no fu	
	56	B1ft	ft their $(x + 4)^2$ rounded to number only if no further ft (their x) ² and rounded to number, eg $x = 3.5$ answ SC1 $3x^2 + 9x - 12$ if seer marks awarded.	o the nearest whole errors. o nearest whole ver 12
	Additional Guidance			
	NB follow through allowed on at most o	ne error. A	After 2 nd error no further ma	arks
	3x - 3 = x + 4 2x = 1 (x =) 0.5 $4.5^2 = 20.25$ 20		First error	M1 A0 A1ft A1ft B1ft
10	3x - 3 = x + 4 2x = 1 (x =) 2 $6^2 = 36$ 36		First error Second error	M1 A0 A0ft A0ft B0ft
	$3x - 3 = x + 4$ $4x = 7$ $(x =) 1.75$ $5.75^{2} = 33.0625$ 33		First error	M1 A0 A1ft A1ft B1ft
	$3x - 3 = x + 4$ $2x = 7$ $(x =) 3.5$ $3.5^{2} = 12.25$ 12		First error	M1 A1 A1 A0ft B1ft
	$3x - 3 = x + 4$ $x = 1$ $(x =) 3.5$ $3.5^{2} = 12.25$ 12		2 errors	M1 A0 A0ft A0ft B0ft
	$3x - 3 = x + 4$ $2x = 7$ $(x =) 4.5$ $4.5^{2} = 20.25$ 20		First error Second error	M1 A1 A0 A0ft B0ft

Q	Answer	Mark	Comments		
	Alternative method 1				
	42 ² – 18 ² or 1440 or 42 + 18 ² or 2088	M1			
	$\sqrt{1440}$	M1dep			
	[37.9, 38] or $12\sqrt{10}$	A1			
11 (a)	Alternative method 2				
	$\cos^{-1}(18 \div 42)$ or 64.6		sin ⁻¹ (18 ÷ 42) or 25.3		
	and 42 × sin their 64.6	M2	and $42 \times \cos$ their 25.3		
	or 18 × tan their 64.6		or 18 ÷ tan their 25.3		
	[37.9, 38] or $12\sqrt{10}$	A1	Answers outside this range due to premature rounding score A0		
	Alternative method 1				
	cos used with 32 and 28 even if wrong	M1	$\frac{y}{\sin 90} = \frac{32}{\sin 62}$		
	32 ÷ cos 28	M1dep	32 ÷ sin 62		
	[36, 36.25]	A1	36 with working		
11 (b)	Alternative method 2				
	(side) = 32 × tan 28 (= 17)	M2	NB M0 for 28 × tan 32 = 17.49 32 ÷ tan 62 (= 17)		
	and $\sqrt{32^2 + 17^2}$		32 · tail 02 (= 17)		
	[36, 36.25]	A1	Answers outside this range due to premature rounding score A0		
	AAA	1	T		

Q	Answer	Mark	Comments		
	Alternative method 1				
	AD = BC or $AB = CD$	B1			
	AC is common	B1			
	AD= BC (equal sides of a rectangle) and AB= CD (equal sides of a rectangle) and AC is common and SSS	B1			
	Alternative method 2				
	AD = BC or $AB = CD$	B1			
	AC is common	B1			
	AD= BC (equal sides of a rectangle) or AB= CD (equal sides of a rectangle) and AC is common and angles B and D are 90° and RHS	B1			
42 (b)	Alternative method 3				
12 (b)	AD= BC or AB= CD	B1			
	AC is common or angle BAC = angle CAB or angle ACB = angle CAD	B1			
	AD= BC (equal sides of a rectangle) or AB= CD (equal sides of a rectangle) and AC is common and angle BAC = angle CAB or angle ACB = angle CAD (alternate angles) and SAS	B1			
	Alternative method 4				
	AC is common	B1			
	angle BAC = angle CAB or angle ACB = angle CAD	B1			
	AC is common and angle BAC = angle CAB and angle ACB = angle CAD (alternate angles) and ASA	B1			

Q	Answer	Mark	Comments		
	Alternative method 1				
	LCM = 2 x 3 x 3 x 7 or HCF = 3 x 7	M1	oe		
	Place their values correctly into Venn diagram	M1			
	42 and 63	A1	SC1 21 = 3 × 7 and 126 = 2 x 3 x 3 x 7		
	Alternative method 2				
	LCM = 2 x 3 x 3 x 7 or HCF = 3 x 7	M1	2 x 3 ² x 7		
	Cancel prime factors to leave 2 and 3	M1			
	42 and 63	A1			
	Alternative method 3				
13	3 7	M1			
	2 3 3 7	M1			
	42 and 63	A1			
	Alternative method 4				
	Multiplies 21 by 2 and divides 126 by 2 or multiplies 21 by 3 and divided 126 by 3	M2			
	42 and 63	A1			

Q	Answer	Mark	Comments			
	Alternative method 1					
	List or table of numbers of cubes for 1, 2, 3, 4 steps and calculation of second difference of 3 3 9 18 30 6 9 12 3 3	M1	oe			
	Subtraction of $1\frac{1}{2}n^2$ from quadratic					
	sequence	M1dep				
	$1\frac{1}{2}$ 3 $4\frac{1}{2}$ 6					
	(Linear sequence) $1\frac{1}{2}n$	A1				
14	$1\frac{1}{2}n^2 + 1\frac{1}{2}n$	A1ft	oe ft $1\frac{1}{2}n^2$ plus their linear if both Ms awarded.			
	Alternative method 2					
	Sets up table of differences n 0 1 2 3 4 c 0 3 9 18 30 a+b 3 6 9 12 2a 3 3 3 3	M1				
	Extends table back to <i>n</i> = 0	M1				
	Identifies rows as $2a$, $a + b$ and c	A1				
	$1\frac{1}{2}n^2 + 1\frac{1}{2}n$	A1	oe			

Q	Answer	Mark	Comments		
	Alternative method 3				
	a + b + c = 3 and $4a + 2b + c = 9$ and $9a + 3b + c = 18$	M1			
	3a + b = 6 and $5a + b = 9$	M1			
	$2a = 3 \text{ or } a = 1\frac{1}{2}$	A1			
14 (cont)	$1\frac{1}{2}n^2 + 1\frac{1}{2}n$	A1	oe		
	Alternative method 4				
	Writes terms as 3×1 , 3×3 , 3×6 , 3×10 ,	M1			
	Identifies 1, 3, 6, 10 as triangle number sequence	M1			
	<i>n</i> th term of TNS = $\frac{1}{2}n^2 + \frac{1}{2}n$	A1	oe		
	$1\frac{1}{2}n^2 + 1\frac{1}{2}n$	A1	oe		
	sf of 4 identified	B1	Accept 'increased by 4' but not 4 '4 more'		
15	4x + 20 = 46 or x + 5 = 11.5	M1			
10	6.5	A1			
	48	B1			
16 (a)	Angles on the same arc are equal or angles in the same segment are equal	Q1	oe strand (i)		
(-)	Additional Guidance				
	Do not accept colloquial terms such as 'b	ow-tie' an	gles.		
	Further exemplars to be provided after st	andardisa	tion.		

Q	Answer	Mark	Comments	
16 (b)	2 <i>y</i> + <i>y</i> + 30 = 180	M1	oe Allow $2y + y + 30 + BAD + DCB = 360$ if BAD + DCB = 180, for example both 90°	
	50	A1		
	Alternative method 1			
	CAB = 40 (alt segment)	B1		
	ACB = 70 (isosceles triangle)	B1		
	ACP = 70 (angles on straight line) and ACP = ACB or 70 is half of 140	Q1	Strand (ii)	
	Alternative method 2			
16 (c)	ACB = ABC (angles in isosceles triangle)	B1		
	PCA = ABC (Alt segment)	B1		
	ACB = PCA (equal) so AC bisects PCB	Q1	Strand (ii)	
	Additional Guidance			
	Penalise first omission of reason only.			
	If assumption is made that AC bisects PC mark.	CB then th	ne scheme above is 'reversed'. Do not award Q	

Q	Answer	Mark	Comments
	Alternative meeth and d		
	Alternative method 1 $\frac{-(-7) \pm \sqrt{(-7)^2 - 4(5)(-3)}}{2(5)}$	M1	Allow one error from: wrong sign for $-b$; Wrong sign for $(-b)^2$; wrong sign for $4ac$. Do not allow division of square root only or division by 2 only
	$\frac{7 \pm \sqrt{109}}{10}$	A1	
17	1.74 and –0.34	A1ft	ft on wrong sign for b only, eg -1.74 and 0.34
	Alternative method 2		
	$\left(x-\frac{7}{10}\right)^2-\frac{49}{100}$	M1	
	$x = \frac{7}{10} \pm \sqrt{\frac{109}{100}}$	A1	
	1.74 and -0.34	A1	Strand (ii)
	Alternative method 1		
	A + B = 90 or B + C = 210	M1	
	A + 2B + C = 300 or C = 132 or A = 12	A1	
18	78	A1	
	Alternative method 2		
	Chooses a value for A, and calculates B as 90 – A and calculates C as 210 – B	M1	
	Calculates A + B + C correctly	A1	
	78	A1	

Q	Answer	Mark	Comments	
	(5x-3)(5x+3)	B1		
	$(ax \pm c)(bx \pm d)$	M1	<i>ab</i> = 10, <i>cd</i> = 3	
	(5x-3)(2x+1)	A1		
	$\frac{5x+3}{2x+1}$	A1ft	ft their factorisations if cancelling possible Do not award if further contradictory work	
	Additional Guidance			
19	$(5x-3)(5x-3) (5x-3)(2x+1) \frac{5x-3}{2x+1}$	B0 M1 A0 A1ft		
	$(5x - 3)(5x + 3)$ $(5x + 3)(2x - 1)$ $\frac{5x - 3}{2x - 1}$	B1 M1 A0 A1ft		
	(5x-3)(5x-3) (5x+3)(2x-1)	B0 M1 A0 A0ft		
	$(5x - 3)(5x + 3)$ $(5x - 3)(2x + 1)$ $\frac{5x + 3}{2x + 1} = 1$ $5x + 3 = 2x + 1$ $3x = -2$ $x = -\frac{2}{3}$	B1 M1 A1 A0		
	$(5x-3)(5x+3)$ $(5x-3)(2x+1)$ $\frac{5x+3}{2x+1} = 3x+2$	B1 M1 A1 A0		

Q	Answer	Mark	Comments		
	Alternative method 1				
20	AF = 10	B1			
	Use of tan with 10 and 12 or use of sin with 10 and their AG or use of cos with 12 and their AG	M1	$AG = \sqrt{(12^2 + 6^2 + 8^2)}$ or $2\sqrt{61}$ or [15.6, 15.62]		
	$tan^{-1}(10 \div 12)$ or $sin^{-1}(10 \div AG)$ or $cos^{-1}(12 \div AG)$	M1dep			
	[39.8, 40]	A1	Values outside this range due to premature rounding score A0 unless correct value seen and subsequently rounded.		
	Alternative method 2				
	AF = 10	B1			
	$AG = \sqrt{(12^2 + 6^2 + 8^2)}$ or $2\sqrt{61}$ or $[15.6, 15.62]$	M1			
	$\cos AGF = \frac{12^2 + AG^2 - 10^2}{12 \times 12 \times AG}$	M1dep			
	[39.8, 40]	A1	Values outside this range due to premature rounding score A0 unless correct value seen and subsequently rounded.		

Q	Answer	Mark	Comments
	Alternative method 1		
21	$90 = \frac{1}{2} \times x^2 \times \sin 60$	M1	oe
	$x^2 = 180 \div \sin 60 \text{ or } 14.416$	M1dep	oe
	$3 \times \text{their } \sqrt{180 \div \sin 60}$	M1dep	
	[43.25, 43.3]	A1	
	Alternative method 2		
	height = $\sqrt{(2x)^2 - x^2}$	M1	
	$90 = x \times \sqrt{3} x$	M1dep	
	$\sqrt{90 \div \sqrt{3}}$ or 7.208	M1 dep	
	[43.25, 43.3]	A1	Values outside this range due to premature rounding score A0 unless correct value seen and subsequently rounded.
22	$9m \times 2m = 10n \times 5n$	M1	
	$18m^2 = 50n^2 \text{ or } m^2 = \frac{50}{18}n^2$	M1dep	oe
	$m = \frac{5}{3}n$	M1dep	
	$\frac{m}{n} = \frac{5}{3}$	A1	