AQA

GCSE
 Mathematics

93652H Methods in Mathematics
Unit 2: Higher Tier
Mark scheme

93652H

June 2015

Version 1.0 Final mark scheme

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

[^0]
Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

M Method marks are awarded for a correct method which could lead to a correct answer.

A

B
ft

SC Special case. Marks awarded within the scheme for a common misinterpretation which has some mathematical worth.

Mdep A method mark dependent on a previous method mark being awarded.

B dep A mark that can only be awarded if a previous independent mark has been awarded.
oe
Or equivalent. Accept answers that are equivalent. eg, accept 0.5 as well as $\frac{1}{2}$
$[a, b] \quad$ Accept values between a and b inclusive.
$3.14 \ldots \quad$ Allow answers which begin 3.14 eg 3.14, 3.142, 3.149.

Use of brackets It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a candidate has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the candidate. In cases where there is no doubt that the answer has come from incorrect working then the candidate should be penalised.

Questions which ask candidates to show working

Instructions on marking will be given but usually marks are not awarded to candidates who show no working.
Questions which do not ask candidates to show working
As a general principle, a correct response is awarded full marks.

Misread or miscopy

Candidates often copy values from a question incorrectly. If the examiner thinks that the candidate has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

1	$2 \times \pi \times 15$	M1	oe	
	[$94,94.3$] or 30π	A1	Correct answer only full marks	
	Additional Guidance			
	Wrong formula is M0, A0. Be careful of $\pi \times 15^{2}=30 \pi$ which is M0, A0			
	$\begin{aligned} & 2 \times \pi \times 15 \\ & 30 \pi \\ & 30 \pi \div 2=15 \pi=[47,47.15] \end{aligned}$	Correct formula followed by incorrect work		$\begin{aligned} & \text { M1 } \\ & \text { A0 } \end{aligned}$
	$\begin{aligned} & \frac{1}{2} \times 2 \times \pi \times 15 \\ & 15 \pi \end{aligned}$	Incorrect formula		$\begin{aligned} & \text { M0 } \\ & \text { A0 } \end{aligned}$

	9×6 or 9×11 or $\frac{9}{2} \times 11$ or $\frac{1}{2} \times 9 \times 5$ or $\frac{1}{2} \times \frac{9}{2} \times 5$ or $\frac{1}{2} \times \frac{9}{2} \times(11+6)$	M1 or 99 or 49.5 or 22.5 or 11.25 or 38.25	
	$9 \times 6+\frac{1}{2} \times 9 \times 5$ or $9 \times 11-2 \times \frac{1}{2} \times \frac{9}{2} \times 5$	M1dep	$54+22.5$ or $99-22.5$ or 2×38.25
	or $2 \times \frac{1}{2} \times \frac{9}{2} \times(11+6)$	A1	Allow 76 or 77 after 76.5 seen

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

3	Reflection, Reflected, Reflect	B1	Allow poor spelling if meaning clear
	$x=-1$ written or drawn and labelled as $x=-1$	B1	Must have $x=$
	Additional Guidance		
	Ignore any linking words such as 'in', 'on', 'about', 'over', 'by'		
	Mirror about $x=-1$	B0, B1	
	Relefted in $y=-1$	B1, B0	
	Reflex in $x-1$	B1, B0	
	Flipped over $x-1=0$	B0, B0	

\mathbf{Q}	Answer	Mark	Comments

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

| $\binom{2}{6}$ |
| :--- | :--- | :--- | :--- |
| or $\left(\frac{2}{6}\right)$ |
| or translation (or similar) and $\frac{2}{6}$ |
| or translation (or similar) and 2 right |
| 6 up |\quad| B2 |
| :--- | | B1 for translation (or similar) and a wrong |
| :--- |
| vector or words |
| B1 for 2 right 6 up |
| B1 for $\binom{2}{6}$ with incorrect transformation |
| given , eg reflection. |
| B1 for $\binom{2}{a}$ where $a \neq 6$ |
| B1 for $\binom{b}{6}$ where $b \neq 2$ |
| B1 for $\frac{2}{6}$ |
| B1 for $\binom{-2}{-6}$ |

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

Alternative method 1

\(\left.\begin{array}{|l|l|l|}\hline \frac{8}{100} \times 350 or 280 or 168 \& M1 \& oe

\hline \frac{8}{100} \times their 280 or 168 and

their 60 \% value \div 350(\times 100)\end{array}\right]\) M1dep | oe |
| :--- |
| 48 |

Alternative method 2

0.8 or 0.6 seen	M1	oe
0.8×0.6 or 0.48	M1dep	oe
48	A1	
Additional Guidance		
Build up methods must be fully correct to score M1dep		
168	M1	
$10 \%=35,40 \%=140,1 \%=3.5,8 \%=28$	M0dep	
$40+1+8=49$	A0	
168	M1	
$10 \%=35,40 \%=140,1 \%=3.5,28 \div 3.5=7.5 \%$	A0	
$40+7.5=47.5$		

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

Q	Answer	Mark	Comments

Q	Answer	Mark	Comments

Q Answer	Mark	Comments	
12(a)	60	B1	

Alternative method 1

$\frac{9}{60}$ and $\frac{44}{60}$	M1	Fractions with same denominator
$\frac{44}{60}-\frac{9}{60}$ or $\frac{35}{60}$	M1dep	Subtraction of their fractions
$\frac{35}{60} \div 5 \times 2$ or $\frac{35}{60} \div 5 \times 3$		
or $\frac{14}{60}($ oe $)$ or $\frac{21}{60}$ (oe)		
or $14: 21$	M1dep	Splitting their difference into $2: 3$ or finding $\frac{2}{5}$
$\frac{23}{60}$	A1	oe eg $\frac{115}{300}$

Alternative method 2

12(b)

0.15 and $0.73 \ldots$	M 1	
$0.73-0.15=0.583 \ldots$	M 1 dep	
their $0.583 \div 5 \times 2$ or $0.23 \ldots$ or their $0.583 \div 5 \times 3$ or 035	M1dep	
$0.383 \ldots$	A 1	Must be to 0.383 or better

Alternative method 3

$\left(\frac{11}{15}-\frac{3}{20}\right)$	M1	
$\frac{7}{12}$	M1dep	oe $\frac{7}{12}$ with no working is M2
their $\frac{7}{12} \div 5 \times 2$ or $\frac{7}{30}$	M1dep	their $\frac{7}{12} \div 5 \times 3$ or $\frac{7}{20}$
$\frac{23}{60}$	A1	

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

15(a)	C	B1	Any clear indication, eg letter circled within triangle.

15(b)	$\begin{aligned} & 12.5 \div 5 \text { or } 2.5 \text { or } \frac{12.5}{5} \\ & 5 \div 12.5 \text { or } 0.4 \text { or } \frac{2}{5} \\ & \text { or } 6 \div 5 \text { or } 1.2 \text { or } \frac{6}{5} \\ & \text { or } 5 \div 6 \text { or } 0.833 \text {.. or } \frac{5}{6} \end{aligned}$	M1		
	15	A1	Must come from	
	Additional Guidance			
	$\begin{aligned} & 12.5-5=7 \\ & 6+7.5=13.5 \end{aligned}$			$\begin{gathered} \text { M0 } \\ \text { A0 } \end{gathered}$
	$\begin{aligned} & 5 \div 6=0.833 \\ & 12.5 \div 0.833=15.006=15 \end{aligned}$		Answer not from exact working	$\begin{aligned} & \text { M1 } \\ & \text { A0 } \end{aligned}$

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

16	$5: 3: 12$	M1	oe	
	$60 \div$ their $(5+3+12)$ or 3	M1dep		
	9	A1	9 with no wrong or contradictory work is 3 marks.	
	Additional Guidance			
	$\begin{aligned} & 10: 6: 24 \\ & 60 \div 40=1 \frac{1}{2} \\ & 6 \times 1 \frac{1}{2}=9 \end{aligned}$			M1 M1dep A1
	Blue $:$ red red $:$ Yellow 5 $: 3$ $1: 4$ 10 $: 6$ $6: 24$ 15 $: 9$ 9 No further working. No answer		Need to see that the total is 60	M1 M1dep A0
	Blue $:$ red red : Yellow $5: 3$ $3: 12$ $=20$ $10: 6$ $6: 24$ $=40$ $15: 9$ $9: 36$ $=60$ No further working. No answer		Clearly see that red = 9 out of 60 balls	M1 M1 A1

Q	Answer	Mark	Comments
$\mathbf{1 7 (a)}$ 90 B1 17(b) 40 B1			

\mathbf{Q}	Answer	Mark	Comments

Alternative method 1

$\frac{1}{2} \times 12 \times 13 \times \sin C A B=48$	M 1	
$\sin C A B=) \frac{96}{12 \times 13}$ or $\frac{8}{13}$ or $[0.6,0.6154]$	A 1	oe
$[37.95,38]$	A 1	If radians [0.66, 0.663] If gradians [42, 42.2] Allow M1, A1, A0

Alternative method 2

18(a)

$\frac{13}{2} \times h=48$ $h=\frac{96}{13}$	M 1	
$\sin x=\frac{96}{13} \div 12$ or $\frac{8}{13}$ or $[0.6,0.6154]$	M1dep	
$[37.95,38]$	A1	If radians [0.66, 0.663] If gradians [42, 42.2] Allow M1, A1, A0
Additional Guidance		
Answer outside range is premature rounding		
$\sin x=0.61, x=37.58$		

\mathbf{Q}	Answer	Mark	Comments

18(b)	$\left(x^{2}=\right) 23^{2}+19^{2}-2 \times 23 \times 19 \times \cos 42$	M1	Wrong formula is M0	
	$\left(x^{2}=\right)[240,240.5]$	A1		
	[15.5, 16]	A1ft	16 with working $\mathrm{ft} \sqrt{ }$ their 240 if M 1 awarded and $\cos 42$ prematurely rounded to 0.74 , for example, but not on a miscalculation. Answer must be given accurately to a minimum of 3 sf . If Radians 1239 and [35, 35.21] If Gradians 199 and [14, 14.12] Allow M1, A1, A0	
	Additional Guidance			
	$16 \cos 42=11.89, x=3.44$			M1, A0, A0
	$23^{2}+19^{2}-2 \times 23 \times 19 \times 0.7=278.2, x=16.7$			M1, A0, A1ft

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

Alternative method 1

Differencing to get second difference as 3 or stating second difference as 3	M1	
Stating $1 \frac{1}{2} n^{2}$	A1	Can be implied by $1 \frac{1}{2}, 6,13 \frac{1}{2}, 24,37 \frac{1}{2}$
Linear part $2 \frac{1}{2}, 2,1 \frac{1}{2}, 1, \frac{1}{2}$	M1dep	
$1 \frac{1}{2} n^{2}-\frac{1}{2} n+3$	A1	$1 \frac{1}{2} n^{2}$ is 2 marks $-\frac{1}{2} n$ is 1 mark (dependent) +3 is 1 mark (dependent)

19

Alternative method 2

Differencing to get second difference as 3	M1				
Working table backwards to get 0th term	A1	3		4	8
		1		4	

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

Alternative method 3

Differencing to get second difference as 3	M1			
Stating two of $2 a=3,3 a+b=4$ or $a+b+c=4$	A1		4	

19
Alternative method 4

$a+b+c=4$ $4 a+2 b+c=8$ $9 a+3 b+c=15$	M1	
$3 a+b=4$ $5 a+b=7$	M1dep	
$a=1 \frac{1}{2}$ and $b=-\frac{1}{2}$	A1	
$1 \frac{1}{2} n^{2}-\frac{1}{2} n+3$	A1	Allow any letter

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

Alternative method 1

$(a x \pm c)(b x \pm d)(=0)$	M 1	$a b=2, c d=9$
$(2 x-3)(x+3)(=0)$	A 1	
$1 \frac{1}{2}$ and -3	A 1 ft	ft if M awarded.

Alternative method 2

$\left(x+\frac{3}{4}\right)^{2}-\frac{9}{16}-\frac{9}{2}(=0)$	M1	Allow one arithmetic error but must be $\left(x+\frac{3}{4}\right)^{2}$
$x+\frac{3}{4}= \pm \sqrt{\frac{81}{16}}$	M1dep	
$1 \frac{1}{2}$ and -3	A1	

Alternative method 3

$\frac{-3 \pm \sqrt{3^{2}-4 \times 2 \times(-9)}}{2 \times 2}$	M1	Allow one error
$\frac{-3 \pm \sqrt{81}}{4}$	A1	
$1 \frac{1}{2}$ and -3	A0	As not by factorisation

\mathbf{Q}	Answer	Mark	Comments

20	Additional Guidance		
	$(2 x+3)(x-3), x=-1 \frac{1}{2}$ and 3		M1, A0, A1ft
	$(2 x+1)(x-9), x=-\frac{1}{2}$ and 9		M1, A0, A1ft
	$\left(x-\frac{3}{4}\right)^{2}+\frac{9}{16}-\frac{9}{2}, x-\frac{3}{4}= \pm \sqrt{\frac{63}{16}}, x=\frac{3}{4}+\sqrt{\frac{63}{16}}$ and $x=\frac{3}{4}-\sqrt{\frac{63}{16}}$		M1, A0, A1ft
	Errors when using formula are wrong sign for $b,-9$ for $b^{2},-54$ for $-4 a c$.		
	Unacceptable errors are wrong formula, eg + for $\pm, 2$ for $2 a$, dividing square root only by $2 a$, or any wrong value for a, b or c.		
	$\frac{-2 \pm \sqrt{2^{2}-4 \times 2 \times(-9)}}{2 \times 2}$	Wrong value for b	M0
	$\frac{-3 \pm \sqrt{3^{2}+4 \times 2 \times(-9)}}{2 \times 2}$	Wrong formula	M0
	$\frac{-3 \pm \sqrt{3^{2}+4 \times 2 \times 9}}{2 \times 2}$	Could be wrong formula but could be minus minus making a plus. BOD	M1

21	Alternate or opposite segment (theorem)	Q1	Strand (i)	
	(ABS) alternate angles (to BST)	Q1	Strand (i)	
	Additional Guidance			
	Students could draw extra lines on diagram and then give a valid reason in last statement.			
	SBX is $180-x$, so co-interior an			B1

Q	Answer	Mark	Comments
22	$(3 x+2)(3 x-2)$	B1	
	$(a x \pm c)(b x \pm d)$	M1	$a b=6, c d=2$
	$(3 x+2)(2 x-1)$	A1	
	$\frac{3 x-2}{2 x-1}$	A1ft	ft on B 1 and M1 but must have a bracket that cancels top and bottom. Any further work A0

\mathbf{Q}	Answer	Mark	Comments

23	$A B=13$ tan used with 4 and their 13	B1	Check diagram	
		M1	their 13 must come from use of Pythagoras	
	$\begin{aligned} & \tan ^{-1}(4 \div \text { their } 13) \\ & \text { or } \tan x=\frac{4}{13} \end{aligned}$	M1dep	oe	
	[17, 17.103]	A1ft	Answers outside this range will be due to premature rounding ft on their 13 if angle correct to 2 sf or better. Radians 0.298 A0	
	Additional Guidance			
	If $A C$ used, then it must be a complete method for M 2 and answer must be in range or A 0			
	$\begin{aligned} & A C^{2}=13^{2}+4^{2} \\ & A C=13.6 . . \\ & \sin ^{-1}(4 \div 13.6) \text { or } \cos ^{-1}(13 \div 13.6) \\ & {[17,17.103]} \end{aligned}$			B1 M2 A1
	$\begin{aligned} & \cos A=\frac{13^{2}+13.6^{2}-4^{2}}{2 \times 13 \times 13.6} \\ & 17.1 \end{aligned}$			$\begin{aligned} & \mathrm{B} 1 \\ & \text { M2 } \\ & \text { A1 } \end{aligned}$
	$\begin{aligned} & A B^{2}=12^{2}+5^{2}=17^{2} \\ & A B=17 \\ & \tan ^{-1}(4 \div 17) \\ & 13.2 \end{aligned}$			B0 M1 M1dep A1ft

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

24(a)	$\frac{3}{M L}=\frac{x}{2.5}$	B1	

24(b)	$\frac{M L}{1.2}=\frac{4}{x} \quad \text { or } \frac{4}{M L}=\frac{x}{1.2}$	M1	oe, eg ML : $x=4$: 1.2
	$\frac{4.8}{x}=\frac{2.5 x}{3}$ or $\frac{3 M L}{2.5}=\frac{4.8}{M L}$	M1dep	$\begin{aligned} & \text { oe, eg } 3 \times 4.8=2.5 x^{2} \\ & 14.4=2.5 x^{2} \\ & 3 M L^{2}=2.5 \times 4.8 \\ & 3 M L^{2}=12 \\ & \text { or } Q B=4.8 \\ & \text { or } T B=1.5 \end{aligned}$
	$x^{2}=\frac{3 \times 4.8}{2.5}$ or $M L=2$	A1	oe
	2.4	A1	
	No progress can be made unless the first line of the scheme is achieved (unless $Q B=4.8$ or $T B=1.5$ shown which is 2 marks). After that it is not always easy to follow working as fractions as part of fractions appear and numerators/denominators end up in the wrong place after the student attempts to simplify.		
	The following are usually a sign that the algebra has gone wrong. $4 x, 3 x, 1.2 \mathrm{ML}, 4.5 \mathrm{ML}, 2.5 \mathrm{ML}$ or $M L=1.2$		

[^0]: Copyright © 2015 AQA and its licensors. All rights reserved.
 AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

