

AQA Qualifications

GCSE Methods in Mathematics (Linked Pair Pilot)

93651H Unit 1: Higher Tier Mark Scheme

9365 November 2014

Version 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Copyright © 2014 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

М	Method marks are awarded for a correct method which could lead to a correct answer.
Mdep	A method mark dependent on a previous method mark being awarded.
Α	Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.
В	Marks awarded independent of method.
Bdep	A mark that can only be awarded if a previous independent mark has been awarded.
Q	Marks awarded for quality of written communication.
ft	Follow through marks. Marks awarded for correct working following a mistake in an earlier step.
SC	Special case. Marks awarded for a common misinterpretation which has some mathematical worth.
oe	Or equivalent. Accept answers that are equivalent.
	eg accept 0.5 as well as $\frac{1}{2}$
[<i>a</i> , <i>b</i>]	Accept values between <i>a</i> and <i>b</i> inclusive.
25.3	Allow answers which begin 25.3 e.g. 25.3, 25.31, 25.378.
Use of brackets	It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a candidate has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the candidate. In cases where there is no doubt that the answer has come from incorrect working then the candidate should be penalised.

Questions which ask candidates to show working

Instructions on marking will be given but usually marks are not awarded to candidates who show no working.

Questions which do not ask candidates to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Candidates often copy values from a question incorrectly. If the examiner thinks that the candidate has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Q	Answer	Mark	Comments	
1(a)	-3	B1		
1(a)	-5			
1(b)	Plots the given points and their point	M1	ft their (a) if it can be plotted	
	Draws smooth curve through the correct seven points	A1		
	Additional guidance			Mark
	The first mark can be awarded if their a is no ft on the second mark. If they hav can still be awarded two marks in (b) for	e given a v	vrong, or no, answer to (a) they	
	For one or both mark(s), allow the poin point.	ts plotted v	vithin ½ square of the correct	

2(a)	a) $x(x+5)$ B1						
	Additional guidanceAccept $x(5+x)$ and accept $(5+x)$ instead of $(x + 5)$ in any of the following.Condone $x \times (x + 5)$ and $(x + 5) \times x$ and $(x + 5)x$ Condone $x(x + 5 \text{ and } x \times (x + 5))$						
2(b)	2(4 <i>y</i> – 7)						
	Additional guidance Ma						
	Condone $2 \times (4y - 7)$ and $(4y - 7) \times 2$ but not $(4y - 7)^2$						

Q	Answer	Mark	Comments		
3(a)	x + x + 1 + x + 2 + x + 3 + x + 4 = 5x + 10	B1			
	Additional guidance			Mark	
	Addition signs may be missing if addition arrangement with total underneath	on is clearly	/ indicated, for example in vertical		
3(b)	10 <i>n</i> + 10	B1			
	10(n + 1) or argument that both terms in the expression are multiples of 10	Q1	Strand ii – correct algebraic proof		
	Additional guidance				
	10n + 1 may come from a substitution of $2n$ for x or it may come from a restart, with $2n$, $2n + 1$, $2n + 2$, $2n + 3$ and $2n + 4$ added.				
	If a different letter (including x) is used, award B1Q1 if the letter has been defined and B0Q1 for an otherwise correct answer				

4(a)	A B 40 20 60 120 80 100 100 180 120 160 140	B2	B1 for at least one correct region	1	
4(b)	Gives both probabilities as $\frac{7}{10}$ oe or States that there are 7 numbers for each	B1ft	B1ft ft if their Venn diagram is incorrect they ma show that the two probabilities are equal or are not equal and still qualify for this mark		
	Additional guidance Mark				
	If their Venn diagram is incorrect they can achieve this mark either from a restart or from using their diagram				
	Withhold the mark if their $\frac{7}{10}$ or 7 comes from incorrect working.				

Q	Answer	Mark	Comments	
5(a)	x + 3x + 0.2 + 6x = 1	B1	oe 10 <i>x</i> + 0.2 = 1	
	0.08	B1ft	oe ft their equation of the form <i>ax</i> + <i>a</i>	<i>b</i> = 1 oe
	Additional guidance			Mark
	Accept $10x = 0.8$ for the equation 0.08 without a correct equation scores B0B1			
5(b)	4 × their 0.08	M1	oe their 0.08 + 3 × their 0.08	
	0.32	A1ft	oe fraction, decimal or percentag ft their 0.08 if 0 < their 0.08 < 0.2 SC1 $4x$	
	Additional guidance			Mark
	The condition on the follow though is to ensure that their probability for A or B is greater than 0 and less than 1			

6	500 ÷ (3 + 7) or 50	M1	
	3 × their 50 and 7 × their 50 or 150 and 350 or their 50 × 4	M1dep	
	200	A1	
	Additional guidance		Mark
	150 : 350 150 or 350 implies M1 unless from	n an incorrect me	M1M1A0 ethod.

Q	Answer	Mark	Comments
7	1.15 or 115%	M1	
	4715 ÷ 1.15 or 4715 ÷ 115 (× 100)	M1dep	oe
	4100	A1	
8(a)	5	B1	
8(b)	-2	B1	
8(c)	2 <i>r</i> + 1	B1	oe r+r+1

Q	Answer	Mark	Comments
9	Alternative method 1		
	5x - 15y = 80	M1	Multiplies one or both equation(s) to equate coefficients of x Allow one arithmetic error
	-16 <i>y</i> = 72	M1	16y = -72 Subtracts equations Allow one arithmetic error
	y = -4.5	A1	
	<i>x</i> = 2.5	A1ft	ft from M1M1A0 with clear working shown and only one arithmetic error throughout
	Alternative method 2		-
	15x + 3y = 24	M1	Multiplies one or both equation(s) to equate coefficients of y Allow one arithmetic error
	16x = 40	M1	Adds equations Allow one arithmetic error
	<i>x</i> = 2.5	A1	
	y = -4.5	A1ft	ft from M1M1A0 with clear working shown and only one arithmetic error throughout
	Alternative method 3		
	x = 3y + 16	M1	Finds one variable in terms of the other Allow one arithmetic error
	5(3 <i>y</i> + 16) + <i>y</i> = 8	M1	oe 15y + 80 + y = 8 Correctly substitutes their expression Allow one arithmetic error
	y = -4.5	A1	
	<i>x</i> = 2.5	A1ft	ft from M1M1A0 with clear working shown and only one arithmetic error throughout

Q	Answer	Mark	Comments
9	Alternative method 4		
(cont.)	y = 8 - 5x	M1	Finds one variable in terms of the other Allow one arithmetic error
	x - 3(8 - 5x) = 16	M1	oe x - 24 + 15x = 16 Correctly substitutes their expression
	<i>x</i> = 2.5	A1	
	y = -4.5	A1	

10	t(2x + 1) = 3x + 7	M1	
	2tx + t = 3x + 7	M1dep	
	2tx - 3x = 7 - t	M1dep	
	$x = \frac{7-t}{2t-3}$ or $x = \frac{t-7}{3-2t}$	A1	

11	$x^2 + y^2 = 49$	B1		
	7	B1ft	ft their equation in the form $x^2 + y^2$ 7 gets full marks ignore units	$r^{2} = r^{2}$
	Additional guidance			Mark
	The most likely error for the first mark is $x^2 + y^2 = 23$. If this is followed by an ans For the ft, their r^2 must be positive.			

12(a)	$\frac{1}{2}$	B1	oe any equivalent fraction or decimal
12(b)	y = -ax (+ 4) or (m =) - 2	M1	$-1 \div$ their $\frac{1}{2}$ from (a)
	2	A1ft	ft 1 ÷ their answer to (a)

Q	Answer	Mark	Comments
13	6 10 3 or -1	B1 B1 B1	
14	10x - 6x or 4x or 6x - 10x or -4x 17 - 3 or 14 or 3 - 17 or -14	M1 M1	For M1M1 the rearrangements must be a correct pair: 10x - 6x or $4x$ and $17 - 3$ or $14or6x - 10x$ or $-4x$ and $3 - 17$ or -14
	3.5 or $3\frac{1}{2}$ or $\frac{7}{2}$	A1ft	ft M1M0 or M0M1 with one rearrangement or arithmetic error

Q	Answer	Mark	Comments		
15	Alternative method 1				
15	$\frac{3}{6} + \frac{1}{6}$ or $\frac{4}{6}$ or $\frac{2}{3}$	M1	Common denominator with at least one numerator correct		
	1 – their $\frac{2}{3}$ or $\frac{1}{3}$	M1dep			
	40 ÷ their $\frac{1}{3}$ or 40 × 3 or 120 or 40 ÷ 2	M1dep	ое		
	20	A1			
	Alternative method 2				
	$1 - \frac{1}{6}$ or $\frac{5}{6}$	M1			
	Their $\frac{5}{6} - \frac{3}{6}$ or $\frac{2}{6}$ or $\frac{1}{3}$	M1dep	Common denominator with at least one numerator correct		
	40 ÷ their $\frac{1}{3}$ or 40 × 3 or 120 or 40 ÷ 2	M1dep	oe		
	20	A1			
	Alternative method 3				
	$\frac{1}{2} - \frac{1}{6}$	M1			
	$\frac{3}{6} - \frac{1}{6}$ or $\frac{2}{6}$ or $\frac{1}{3}$	M1dep	Common denominator with at least one numerator correct		
	40 ÷ their $\frac{1}{3}$ or 40 × 3 or 120 or 40 ÷ 2	M1dep	oe		
	20	A1			

Q	Answer	Mark	Comments	
15 (cont.)	Additional guidance			Mark
	Be careful of the value $\frac{1}{3}$			
	This may or may not score 2 marks			
	Example			
	$\frac{3}{6} + \frac{1}{6} = \frac{4}{12} = \frac{1}{3}$			M1 only

Q	Answer	Mark	Comments
16	0.16 or 3.6 or 0.9 or $\frac{16}{100}$ or $\frac{72}{20}$ or $\frac{18}{20}$	B1	oe
	0.72 or $\frac{144}{200}$ or their 0.16 × 4.5 correctly evaluated or their 3.6 × 0.2 correctly evaluated or their 0.9 × 0.8 correctly evaluated or their $\frac{16}{100} \times \frac{9}{2}$ correctly evaluated or their $\frac{72}{20} \times \frac{2}{10}$ correctly evaluated or their $\frac{18}{20} \times \frac{8}{10}$ correctly evaluated	B1	oe
	No and 0.72 or $\frac{72}{100}$ with no incorrect evaluation of $\frac{3}{4}$	Q1ft	Strand iii Correct method for the calculations and correct decision for their product Allow arithmetical errors

Q	Answer	Mark	Comments	
17(a)	Sections may not be the same size or spinner may be biased	B1		
17(b)	$\frac{20}{50}$ or $\frac{2}{5}$ or 0.4	B1	oe fraction, decimal or percentag	е
17(c)	No and correct reason eg No, it's just chance how the second 50 spins land	B1		
	Additional guidance			Mark
	Accept any indication that the results of the first 50	f the secor	nd 50 spins could be different to	
17(d)	Katy and Most spins	B1		

18(a)	2 + 1 = 3 or $2^{1} + 1^{2} = 3$	Q1	Strand ii	
	Additional guidance			Mark
	3 without working			Q0
18(b)	3	B1	Accept $2^3 + 3^2 = 8 + 9 = 17$ with 1 answer	7 as
18(c)	Correct trial for any value of <i>n</i> other than 1 or 3	M1	<i>n</i> : 2 4 5 <i>K</i> : 8 32 57 The trial for <i>n</i> = 2 may be seen in	n 18(b)
	6	A1	Accept $2^6 + 6^2 = 64 + 36 = 100 v$ answer	vith 100 as

Q	Answer	Mark	Comments	
19(a)	$\frac{3}{4}$ and $\frac{1}{2}$ and $\frac{1}{2}$	B1	oe fraction, decimal or percentag	je
19(b)	Their $\frac{3}{4}$ × their $\frac{1}{2}$ or $\frac{3}{8}$	M1	All probabilities must be betweer	n 0 and 1
	$\frac{1}{4}$ + their $\frac{3}{8}$	M1dep	1 – their $\frac{3}{8}$	
	5 8	A1		
20(a)	0	B1		
20(b)	<i>-a</i>	B1		
21(a)	(x + 4)(x - 4)	B1	Brackets in either order	
21(b)	(x + 6)(x - 4)	B2	Brackets in either order B1 for $(x + a)(x + b)$ where $a + b$ or $ab = \pm 24$	= 2
21(c)	$\frac{x+4}{x+6}$	B1ft	ft their answers to (a) and (b) if simplification is possible	
	Additional guidance	1		Mark
	If they give the answer $(x - 6)(x + 4)$ to $\frac{(x+4)(x-4)}{(x+4)(x-6)} = \frac{x-4}{x-6}$ for B1	(b) they sho	ould simplify to	
22	$7^2 \pm 10^2 \pm 11^2$	N/1	$49 \pm 100 \pm 121 \text{ or } 270$	

22	$7^2 + 10^2 + 11^2$	M1	49 + 100 + 121 or 270
	$\sqrt{\text{their 270}}$	M1dep	$\sqrt{9}\sqrt{30}$
	3√30	A1	

Q	Answer	Mark	Comments		
23	Alternative method 1				
	$y = kx^3$ or $12 = k \times 2^3$	M1			
	<i>k</i> = 1.5	A1			
	1500	A1ft	ft their 1.5 × 1000 and M1 scored		
	Alternative method 2				
	(10 ÷ 2) ³ or 5 ³	M1			
	125	A1			
	1500	A1ft	ft their 125 × 12 and M1 scored		

24	Alternative method 1		
	$\frac{2\times10^6}{5\times10^{-3}}$	M1	
	0.4 × 10 ⁹	M1	
	4 × 10 ⁸	A1	
	Alternative method 2		
	$(2.5 \times 10^{-9})^{-1}$	M1	
	0.4×10^{9}	M1	
	4 × 10 ⁸	A1	
	Alternative method 3		
	2 000 000 0.005	M1	
	400 000 000	M1	
	4 × 10 ⁸	A1	

Q	Answer	Mark	Comments
25	Alternative method 1		
	$\frac{6}{\sqrt{3}}$	M1	
	$\frac{6\sqrt{3}}{\sqrt{3} \times \sqrt{3}} \text{ or } \frac{6}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$	M1	
	$2\sqrt{3}$ or <i>a</i> = 2	A1	SC1 $2\sqrt{3}$ or $a = 2$ without appropriate working
	Alternative method 2		
	$6\sqrt{5} \times \frac{\sqrt{15}}{\sqrt{15} \times \sqrt{15}}$ or $6\sqrt{5} \times \frac{\sqrt{15}}{15}$	M1	
	$6\sqrt{5} \times \sqrt{5} \times \frac{\sqrt{3}}{15}$	M1	ое
	$2\sqrt{3}$ or <i>a</i> = 2	A1	SC1 $2\sqrt{3}$ or $a = 2$ without appropriate working
	Alternative method 3		
	$6\sqrt{5} = a\sqrt{3} \times \sqrt{15}$	M1	
	$6\sqrt{5} = a\sqrt{3} \times \sqrt{5} \times \sqrt{3}$	M1	ое
	$2\sqrt{3}$ or <i>a</i> = 2	A1	SC1 $2\sqrt{3}$ or $a = 2$ without appropriate working