AQA

AQA Qualifications

GCSE
 Methods in Mathematics
 (Linked Pair Pilot)

93651H
Unit 1: Higher Tier
Mark Scheme

9365

November 2013

Version 1.0 Final Mark Scheme

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.
\(\left.\left.$$
\begin{array}{ll}\text { M } & \begin{array}{l}\text { Method marks are awarded for a correct method which could lead } \\
\text { to a correct answer. }\end{array} \\
\text { M dep } & \begin{array}{l}\text { A method mark dependent on a previous method mark being } \\
\text { awarded. }\end{array} \\
\text { A } & \begin{array}{l}\text { Accuracy marks are awarded when following on from a correct } \\
\text { method. It is not necessary to always see the method. This can be } \\
\text { implied. }\end{array} \\
\text { B } & \begin{array}{l}\text { Marks awarded independent of method. }\end{array} \\
\text { B dep mark that can only be awarded if a previous independent mark } \\
\text { has been awarded. }\end{array}
$$ \quad $$
\begin{array}{l}\text { Marks awarded for quality of written communication. }\end{array}
$$\right\} \begin{array}{l}Follow through marks. Marks awarded for correct working

following a mistake in an earlier step.\end{array}\right]\)| Special case. Marks awarded for a common misinterpretation |
| :--- |
| which has some mathematical worth. |

M1 Higher Tier

Q	Answer	Mark	Comments

$\mathbf{1}$	$5 x+20$ circled	B1	

2(a)	$3(x-7)$	B 1	
2(b)	$x(x+6)$	B 1	

3	0.24 for D	B1	
	$(1-0.12-$ their 0.24$) \div 2$ or $0.64 \div 2$ or 0.32	M1	
0.32 for B and C		oe ft their value for D SC2 correct values in wrong order	

4	Links all four correctly $x^{2}+4 x-7$ $x^{2}+4 x-7>14$ $x^{2}+4 x-7=14$ $A=x^{2}+4 x-7$	Expression		B2 links any two correctly
		Inequality		

5(a)	8	B1	
5(b)	Plots the given points correctly	M1	
	Correct curve from $x=-2$ to $x=3$	A1ft	ft their y value in (a) if $3<y \leq 10$
5(c)	$x=1$	B1	

Q	Answer		Mark
$\mathbf{6}$ 6	$9 x-5 x$ or $4 x$ or $22+6$ or 28	M1	Comments
	$4 x=28$	A1	
	7	A1ft	Ct their rearrangement with one error if M1 scored

7(a)	40 in correct place	B1	
7(b)	$27 / 100$	B1	oe
7(c)	$12 / 100$	B1	oe SC1 27/60 oe in (b) and 12/60 oe in (c) or correct probabilities in words for (b) and (c)

$\mathbf{8 (a)}$	n^{8}	B1	
8(b)	n^{4}	B1	
$\mathbf{8 (c) ~}$	n^{12}	B1	

$\mathbf{9}$	$y=3 x+6$	B3	oe B2 $y=3 x \pm c$ or $3 x+6$ B1 indication that gradient is $6 \div 2$ or 3 or $y=m x+6$

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

10	0.7 on 'First event' branch	B1	oe fraction, decimal or percentage
	0.5 on 'Second event' top branch	B1	oe fraction, decimal or percentage
	All four values in middle column 0.5 or other three values correct for their value in top branch	B1	oe fraction, decimal or percentage
	0.15 0.15 0.35 0.35 or correct multiplication of their first and second columns in three boxes on right	B1ft	ft their values All probabilities must be between 0 and 1

11	4 and 40 000 and 200	B2	B1 for any correct value of $n \times 10^{\wedge} n$, where $n>1$ $200,3000,40000,500000,6000000$ etc

\mathbf{Q}	Answer	Mark	Comments

12 Alt 1	$2 / 3 \times 2 / 3$ or 4/9	B1	
	$1 / 3 \times 2 / 3$ or 2/9	M1	
	Their $2 / 9 \times 2$	M1dep	
	4/9 and 4/9	Q1	Strand (ii) Full method and all probabilities shown
12 Alt 2	$2 / 3 \times 2 / 3$ or 4/9	B1	
	$1 / 3 \times 1 / 3$ or $1 / 9$	M1	
	1 - their $1 / 9$ - their $4 / 9$	M1dep	
	4/9 and 4/9	Q1	Strand (ii) Full method and all probabilities shown
12 Alt 3	$P(B, B)=2 / 3 \times 2 / 3$	M1	
	$\begin{aligned} & P(B, R)=2 / 3 \times 1 / 3 \text { or } \\ & P(R, B)=1 / 3 \times 2 / 3 \text { or } \\ & P(R, R)=1 / 3 \times 1 / 3 \end{aligned}$	M1	
	4/9 or 2/9 or 1/9	A1	
	Completion of argument showing $P(B, B)=4 / 9$ and either $P(R, B)+$ $P(B, R)=2 / 9+2 / 9=4 / 9$ or P (one of each colour) $=1-P(B, B)-P(R, R)=$ $1-4 / 9-1 / 9=4 / 9$	Q1	Strand (ii) Full method and all probabilities shown

13(a)	Correct curve	B1	Through (0, 0), (90, 2), (180, 0), (270, -2) and (360, 0)
13(b)	Correct curve	B1	Through (0,1), (90, 0), (180, -1), (270, 0) and (360, 1)
$\mathbf{1 3 (c) ~}$	Correct curve	B1ft	Through (0,2), (90,1), (180,0), (270,1) and $(360,2)$ ft their (b) translated 1 up

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

14 Alt 1	$P=4 Q \text { or (' } k \text { ' }=) 4$ or $Q=30 / R \text { or }\left({ }^{\prime} k=\right) 30$	M1	Condone $4 \times 5=20$ Condone $30 \div 6=5$
	$P=4 Q \text { and } Q=30 / R$ or $' k=4 \text { and ' } k \text { ' }=30$ or $P=120 / R$	M1	
	12	A1ft	ft their equations of the form $P=n Q$ and $Q=m / R$ and M1M0 scored
14 Alt 2	$10 \div 6 \text { or } 1 \frac{2}{3}$	M1	
	$20 \div 1 \frac{2}{3}$	M1	
	12	A1ft	ft $20 \div$ their ratio and M1 M0 scored
14 Alt 3	$6 \div 10$ or 0.6	M1	
	$20 \times$ their 0.6	M1	
	12	A1ft	ft $20 \times$ their ratio and M1M0 scored

$\mathbf{1 5 (a)}$	$60 \div 3$ or $60 \div 300 \times 100$	M1	
	20	A1	
	$480 \div(1+3)$ or $480 \div 4$ or 120	M1	
	$120: 360$	A1	

$\mathbf{1 6}$	$1275-1$ or 1274 or $1275+51$ or 1326	M1	
	1325	A1	An answer of 1275 scores 0

Q	Answer	Mark	Comments
$\mathbf{1 7}$	$4 / 5 \times 8 / 3$ or $0.8 \div 0.375$	M1	
	$32 / 15$ or 480/225 or 2.13		
	$22 / 15$	A1	oe fraction

$\begin{gathered} 18 \\ \text { Alt1 } \end{gathered}$	$3 x-2+x+10$ or $4 x+8$	M1	
	$4 x+8=52$ or $4 x=44$	M1	
	11	A1	SC2 $3 x-2+x+10=52$ and one error in simplification, rearrangement and solution or $4 x+12=52$ and answer 10 or $4 x-12=52$ and answer 16 or $4 x-8=52$ and answer 15
$\begin{gathered} 18 \\ \text { Alt } 2 \end{gathered}$	$52-10+2$ or 44	M1	
	Their $44 \div 4$	M1dep	
	11	A1	SC2 $3 x-2+x+10=52$ and one error in simplification, rearrangement and solution or $4 x+12=52$ and answer 10 or $4 x-12=52$ and answer 16 or $4 x-8=52$ and answer 15

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

19 Alt 1	Lists or constructs a sample space for the outcomes with at least 4 correct values shown.	M1	
	$\begin{aligned} & 35,14,-28,-42,10,-20,-30,-8, \\ & -12,24 \end{aligned}$ or 4 positive signs and 6 negative signs	A1	Could be 20 outcomes if order of choice is included.
	4/10	B1ft	oe Correct probability for their outcomes (minimum 6) Correct answer scores 3 marks with no incorrect working SC2 13/25 for using same number twice
$\begin{gathered} 19 \\ \text { Alt } 2 \end{gathered}$	$2 / 5 \times \frac{1}{4}$ or $3 / 5 \times \frac{1}{2}$	M1	
	$2 / 5 \times \frac{1}{4}+3 / 5 \times \frac{1}{2}$	A1	
	4/10	B1ft	oe Correct addition of their two products and M1 scored Correct answer scores 3 marks with no incorrect working SC2 13/25 for using same number twice
$\begin{gathered} 19 \\ \text { Alt } 3 \end{gathered}$	$2 / 5 \times \frac{3}{4}$	M1	
	$1-\left(2 / 5 \times \frac{3}{4}+3 / 5 \times \frac{1}{2}\right)$	A1	
	4/10	B1ft	oe Correct addition of their two products and subtraction from 1 and M1 scored Correct answer scores 3 marks with no incorrect working SC2 13/25 for using same number twice

Q	Answer	Mark	Comments
20	$2 / 4+1 / 4 \text { or } 3 / 4$ or $0.5+0.25 \text { or } 0.75$	M1	Finds a common denominator
	$45 \div$ their $3 \times$ their 4	M1	$42 \div$ their 0.75
	60	A1	

21	$6 x^{2}-21 x+8 x-28$	M1	Four terms, with any three correct and one in x^{2}
	$6 x^{2}-13 x-28$	A1	

22	5 divided by 12 with at least 0.4 found or $0.08 \dot{3} \times 5$	M1	An actual division process must be seen
	$(0) .41 \dot{6}$	A1	Correct notation Condone any notation with extra digits 6 which would produce the same result eg (0).416 $\dot{6}$ or (0).41 $\dot{6} \dot{6}$

Q	Answer	Mark	Comments
$\begin{gathered} 23 \\ \text { Alt } 1 \end{gathered}$	$\begin{aligned} & 30 x+5 y=10 \\ & (2 x+5 y=-4) \end{aligned}$	M1	oe allow one multiplication error
	$28 x=14$	A1	oe
	$x=\frac{1}{2}, y=-1$	A1	SC1 Correct answer without algebraic working
$\begin{gathered} 23 \\ \text { Alt } 2 \end{gathered}$	$\begin{aligned} & (6 x+y=2) \\ & 6 x+15 y=-12 \end{aligned}$	M1	oe allow one multiplication error
	$14 y=-14$	A1	oe
	$x=\frac{1}{2}, y=-1$	A1	
$\begin{gathered} 23 \\ \text { Alt } 3 \end{gathered}$	$\begin{aligned} & (y=2-6 x) \text { and } \\ & 2 x+5(2-6 x)=-4 \text { or } \\ & 2 x+10-30 x=-4 \end{aligned}$	M1	
	$28 x=14$	A1	
	$x=\frac{1}{2}, y=-1$	A1	SC1 Correct answer without algebraic working

24(a)	$x^{3}-x^{2}+x-1 \equiv\left(x^{2}+1\right)(x-1)$	Q1	Strand (i) Correct terminology.
24(b)	$64-16+4-1=51$	B1	
Alt 1	$(16+1)(4-1)=17 \times 3=51$	B1	May multiply out into four terms after substitution
24(c)	$1 /(x-1)$	B1	

25	$2^{3} \times 17$	M1	8×17
	136	A1	

Q	Answer	Mark	Comments
26	$p r=4-r$	M1	$p=\frac{4}{r}-1$
	$p r+r=4$	M1	$p+1=\frac{4}{r}$
	$r=\frac{4}{p+1}$	A1	

27	$\left(\frac{1}{64}\right)^{1 / 2}$ or $1 / \sqrt{64}$ or $\sqrt[4]{16^{3}}$ or $\left(16^{\frac{1}{4}}\right)^{3}$ or shows that $64^{1 / 2}=\sqrt{64}$ or shows that $16^{1 / 4}=2$	M1	
	$\frac{1}{8}($ oe) or 8	A1	Not that $64^{-1 / 2}=\sqrt{64}$
	1 and $\frac{1}{8}$ (oe) and 8	Strand (ii) Correct working and evaluation of both terms leading to an answer of 1.	

28	Finds common denominator	M1	For at least two terms. Condone algebraic error(s) with numerator(s)
	$\frac{5 x^{2}+15+8-5 x^{2}}{10 x}$	M1	oe May still be three separate expressions
	$\frac{23}{10 x}$	A1	

