General Certificate of Secondary Education June 2013

Methods in Mathematics (Pilot) 9365
Unit 1 Higher Tier 93651H

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk
Copyright © 2013 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

M	Method marks are awarded for a correct method which could lead to a correct answer.
M dep	A method mark dependent on a previous method mark being awarded.
A	Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.
B	Marks awarded independent of method.
B dep	A mark that can only be awarded if a previous independent mark has been awarded.
Q	Marks awarded for quality of written communication.
ft	Follow through marks. Marks awarded for correct working following a mistake in an earlier step.
SC	Special case. Marks awarded for a common misinterpretation which has some mathematical worth.
oe	Or equivalent. Accept answers that are equivalent. eg accept 0.5 as well as $\frac{1}{2}$
[a, b]	Accept values between a and b inclusive.
25.3...	Allow answers which begin 25.3 e.g. 25.3, 25.31, 25.378.
Use of brackets	It is not necessary to see the bracketed work to award the marks.

M1 Higher Tier

Q	Answer	Mark	Comments

1(a)	$5 x-35$ (= 45)	M1	$x-7=\frac{45}{5}$
	$5 x=45+35$	M1	$x=\frac{45}{5}+7$ isolates variable
	16	A1ft	ft after M1M0 or MOM1 SC1 10.4 or 2
1(b)	$10 y-6 y(=4 y)$	M1	or $6 y-10 y(=-4 y)$
	12-3 (= 9)	M1	or 3-12 (=-9)
	2.25	A1 ft	oe ft for M1M0 or M0M1 with only one rearrangement error SC2 3.75 or $\frac{9}{16}(0.5625)$ SC1 $\frac{15}{16}(0.9375)$

2	$112 \div 210$	M1	$112 \div 210 \times 100$
	$132 \div 240$	M1	$132 \div 240 \times 100$
	$0.53 \ldots$ and 0.55	A1	$53 \ldots(\%)$ and 55(\%)
	Their $0.53 \ldots$ and their 0.55 and Year 11	Q1	Their $53 \ldots$ (\%) and their $55(\%)$ and Year 11 Strand (iii) M2 and correct decision for their decimals or percentages
2	Alternative 1		
	$210 \div 112$	M1	$210 \div 112 \times 100$
	$240 \div 132$	M1	$240 \div 132 \times 100$
	1.875 and 1.8(18...)	A1	187.5(\%) and 181.8...(\%)
	Their 1.875 and their $1.8(18 \ldots)$ and Year 11	Q1	Their 187.5(\%) and their 181.8...(\%) and Yea 11 Strand (iii) M2 and correct decision for their decimals or percentages

Q	Answer	Mark	Comments
2	Alternative 2		
	$(210-112) \div 210$	M1	$(210-112) \div 210 \times 100$
	$(240-132) \div 240$	M1	$(240-132) \div 240 \times 100$
	$0.46 \ldots .$. (or 0.47) and 0.45	A1	46....(\%) (or 47(\%)) and 45(\%)
	Their $0.46 \ldots$. (or 0.47) and their 0.45 and Year 11	Q1	Their 46...(\%) (or 47(\%)) and their 45(\%) and Year 11 Strand (iii) M2 and correct decision for their decimals or percentages
2	Alternative 3		
	$210 \div(210-112)$	M1	$210 \div(210-112) \times 100$
	$240 \div(240-132)$	M1	$240 \div(240-132) \times 100$
	2.1(4...) and 2.2(2...)	A1	214...(\%) and 222...(\%)
	Their 2.1(4...) and their 2.2(2...) and Year 11	Q1	Their 214...(\%) and their 222...(\%) and Year 11 Strand (iii) M2 and correct decision for their decimals or percentages
2	Alternative 4		
	$\frac{112}{210} \text { and } \frac{132}{240}$	M1	
	Equates denominators with at least one correct numerator	M1	
	$\frac{32}{60} \text { and } \frac{33}{60}$	A1	$\text { oe } \frac{16}{30} \text { and } \frac{16.5}{30}$
	Their $\frac{32}{60}$ and their $\frac{33}{60}$ and Year 11	Q1	oe Strand (iii) M2 and correct decision for their fractions

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

2	Alternative 5		
	112:210 and 132:240	M1	
	Equates one side of ratio with at least one correct on other side	M1	$1: \frac{210}{112}$ and $1: \frac{240}{132}$ $\frac{112}{210}: 1$ and $\frac{132}{240}: 1$ oe
	16:30 and 16.5:30	A1	oe
	Their $16: 30$ and their $16.5: 30$ and Year 11	Q1	oe Strand (iii) M2 and correct decision for their ratios
2	Alternative 6		
	112: $(210-112)$ and $132:(240-132)$	M1	
	$8: 7$ and $11: 9$	M1	
	72: 63 and $77: 63$	A1	oe
	Their $72: 63$ and their $77: 63$ and Year 11	Q1	Strand (iii) M2 and correct decision for their ratios
2	Alternative 7		
	$210:(210-112)$ and $240:(240-132)$	M1	
	15:7 and $20: 9$	M1	
	135: 63 and $140: 63$	A1	oe
	Their $135: 63$ and their $140: 63$ and Year 11	Q1	Strand (iii) M2 and correct decision for their ratios
3	$150 \div(2+3) \times 2$ or 30	M1	oe
	60	A1	SC1 90

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

4(a)	Ticks ' T ' is always odd'	B1	Any indication
	Odd $\times 5$ (or odd) is odd and odd -2 (or even) is odd or $5 \times$ odd ends in 5 so $5 \times$ odd -2 ends in 3	Q1	Strand (ii) Full explanation with correct box ticked
4(b)	$T+2=5 n$ $n=\frac{T+2}{5}$$\quad$ or $n=\frac{T}{5}+\frac{2}{5}$	A1	$n=\frac{-T-2}{-5}$
		SC1 $\frac{T+2}{5}$ or $\frac{-T-2}{-5}$ or $\frac{T}{5}+\frac{2}{5}$	

5	$300 \div 6(=50)$ or $120 \times 6(=720)$ No and 50 or No and 36 (average of the other numbers) or No and 720	A1	oe $\frac{1}{6}$ oe and $\frac{120}{300}\left(=\frac{2.4}{6}\right)$

6	$\frac{1}{2}$ or $\frac{1}{3}$	M1	Could be on tree diagram
	$\frac{1}{2} \times \frac{1}{3}$	M1	
	$\frac{1}{6}$	A1	oe fraction, decimal or percentage Allow $0.166 \ldots$ or 0.167 or $16.66 \ldots \%$ or 16.67%
6	Alternative		
	Two-way table constructed with 6 outcomes	M1	6 outcomes listed
	Correct 6 outcomes	M1	
	$\frac{1}{6}$	A1	oe fraction, decimal or percentage Allow 0.166 ... or 0.167 or $16.66 \ldots \%$ or 16.67%

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

7(a)	$\begin{aligned} & 6 x+18 y=48 \text { and } \\ & 6 x+16 y=38 \end{aligned}$	M1	oe $\begin{aligned} & 16 x+48 y=128 \text { and } \\ & 18 x+48 y=114 \end{aligned}$ Coefficients of one variable equated. Allow one calculation error.
	$2 y=10$	M1dep	$2 x=-14$ Isolates variable
	$y=5$	A1	$x=-7$
	$x=-7$	A1	$y=5$ SC1 both values correct from non-algebraic method
7(a)	Alternative 1		
	$x=\frac{16-6 y}{2}(=8-3 y)$	M1	$x=\frac{19-8 y}{3}$
	$3\left(\frac{16-6 y}{2}\right)+8 y=19$	M1dep	$2\left(\frac{19-8 y}{3}\right)+6 y=16$
	$y=5$	A1	$y=5$
	$x=-7$	A1	$x=-7$ SC1 both values correct from non-algebraic method
7(a)	Alternative 2		
	$y=\frac{16-2 x}{6}$	M1	$y=\frac{19-3 x}{8}$
	$3 x+8\left(\frac{16-2 x}{6}\right)=19$	M1dep	$2 x+6\left(\frac{19-3 x}{8}\right)=16$
	$x=-7$	A1	$x=-7$
	$y=5$	A1	$y=5$ SC1 both values correct from non-algebraic method
7(b)	Two equations with a unique solution of $x=6$ and $y=-5$	B2	If answer is $x=6$ and $y=-5$ these equations must be on the answer lines B1 one correct equation with at most one incorrect equation B1 two correct equations where one is a multiple of the other If four equations are given, award B2 for all four correct and B1 for two or three correct.

Q	Answer	Mark	Comments

8(a)	$(x-7)(x+4)$	B2	B1 for $(x+a)(x+b)$ where $a+b=-3$ or $a b= \pm 28$
8(b)	$(x-4)(x+4)$	M1	
	$\frac{x-4}{x-7}$	A1ft	ft from (a) if M1 scored and simplification possible This must be their final answer. Withhold the A mark for further work.

9	$\frac{1}{1}(-) \frac{1}{4}(+) \frac{1}{9}(-) \frac{1}{16}(+) \frac{1}{25}$ or $1(-) 0.25(+) 0.1(-) 0.0625(+) 0.04$ [0.8386, 0.8387]	M1	Allow one error
	10.06....	A1	$\frac{3019}{300}$
	$\sqrt{\text { their 10.0633333 }}$	M1dep	[3.172, 3.173] dep on first M1
	Their $3.17228 \div 3.142 \times 100$	M1	$\frac{\text { their } 3.17228-3.142}{3.142} \times 100$
	[100.96, 100.97](%25) and Yes	A1 ft	[0.96, 0.97](%25) and Yes
9	Alternative 1		
	$\begin{aligned} & \frac{1}{1}(-) \frac{1}{4}(+) \frac{1}{9}(-) \frac{1}{16}(+) \frac{1}{25} \text { or } \\ & 1(-) 0.25(+) 0.1(-) 0.0625(+) 0.04 \\ & {[0.8386,0.8387]} \end{aligned}$	M1	Allow one error
	10.06....	A1	$\frac{3019}{300}$
	$\sqrt{\text { their 10.0633333 }}$	M1 dep	[3.172, 3.173] dep on first M1
	Their 3.17228-3.142	M1	
	[0.03, 0.031] and 0.03142 and Yes	A1 ft	

\mathbf{Q}	Answer	Mark	Comments

9	Alternative 2		
	$\frac{1}{1}(-) \frac{1}{4}(+) \frac{1}{9}(-) \frac{1}{16}(+) \frac{1}{25} \text { or }$ $1(-) 0.25(+) 0.1(-) 0.0625(+) 0.04$ [0.8386, 0.8387]	M1	Allow one error
	10.06	A1	$\frac{3019}{300}$
	3.142^{2} ($=9.872164$)	M1	
	$\sqrt{\text { Their } 10.063333 \div 9.872164}$	M1 dep	$\begin{aligned} & \sqrt{\text { Their } 10.063333 \div 9.872164} \times 100 \\ & \text { dep on first M1 } \end{aligned}$
	[1.0096, 1.0097] and Yes	A1 ft	[100.96, 100.97]\% and Yes
9	Alternative 3		
	$\frac{1}{1}(-) \frac{1}{4}(+) \frac{1}{9}(-) \frac{1}{16}(+) \frac{1}{25}$ or $1(-) 0.25(+) 0.1(-) 0.0625(+) 0.04$ [0.8386, 0.8387]	M1	Allow one error
	10.06	A1	
	$\sqrt{\text { their 10.0633333 }}$	M1 dep	[3.172, 3.173] dep on first M1
	3.142×1.01 or 3.17342	M1	3.142×0.99 or 3.11058
	3.1734(2) and [3.172, 3.173] and Yes	A1ft	

10	(Gradient of $P Q=$) $\frac{-4}{7}$	B1	Allow 0.57 or better for $\frac{4}{7}$
	$0=\frac{-4}{7} \times 14+K$	M1	$(K=) 14 \times \text { their } \frac{4}{7} \text { or }-14 \times \text { their } \frac{-4}{7}(=8)$ 8 marked at the y-intercept ft non-integer gradient
	$y=\frac{-4}{7} x+8$	A1 ft	ft non-integer gradient
	$4 x+7 y=56$	A1 ft	oe ft their equation with a non-integer coefficient of x and M1 awarded

| Q Answer | Mark | Comments |
| :---: | :--- | :---: | :---: |
| $\mathbf{1 1 (a)}$ 35 B1
 $\mathbf{1 1}(\mathrm{b})$ $920 \div 100 \div 2$ M1 oe $9.2 \div 2 \quad 920 \times 0.005$
 4.6 A1 | | |

12

$2 a=10+4$ or 14	M 1
7	A 1

13	$x+4$ $4 x$ $4 x+6$	$4 x+16$ or $4(x+4)$ $4 x+6$ or $4 x+16-10$ or $4(x+4)-10$	B2	B1 for either column correct
	$4 x+6$	$4 x+6$	Q1	Strand (ii) Fully correct algebra seen leading to identical outcomes

14	Gives coordinates of at least two points	M 1	
	Correctly plots their points	M 1	
	Correct graph from $x=-3$ to $x=3$	A 1	

15(a)	$1-(0.3+0.25+0.1)$	M1	
	0.35	A 1	oe
15(b)	0.4	B 1	oe

16	Divides 8 by 11, showing at least 0.7	M 1	
	$0 . \dot{7} \dot{2}$	Q1	Strand (i) Correct notation Accept $0.7272 \ldots$

17	$6 x^{2}(+) 3 x(+) 8 x(+) 4$	M 1	4 terms, including one in x^{2}, with at least 3 correct
	$6 x^{2}+3 x+8 x+4$	A 1	
	$6 x^{2}+11 x+4$	A1 ft	ft correct simplification of their four terms, including one in x^{2} SC1 $6 x^{2}+a x+4, a \neq 0, \mathrm{M} 1$ not awarded

Q	Answer	Mark	Comments
18(a)	$\frac{29}{50}$	B1	oe 0.58
18(b)	$\frac{23}{50}$	B1	oe 0.46 SC1 incorrect but consistent denominator, greater than 29, in (a) and (b) with correct numerators.
18(c)	L'	B1	
18(d)	$\frac{40}{50}$ or 40 seen	M1	6,23 and 11 identified
	L u T	A1	T u L SC1 A U B or B $~$

19(a)	$-17-3 \leqslant 4 x<11-3$	M 1	$-20 \leqslant 4 x<8$ or $-5 \leqslant x$ or $x<2$
	$-5 \leqslant x<2$	A1	
19(b)	$-5(x)-4(\times)-3(\times)-2(\times)-1(\times) 0$ $(\times) 1$	M1	Allow one error if subsequent product is correct
	Correct and complete list and 0	A1ft	ft their (a) with at least two integers to multiply, at least one of which is negative or zero SC1 0

20	$3 \div 2 \frac{1}{4}$	M 1	$2.25 x=3$
	$3 \div \frac{9}{4}$	M 1	$4.5 x=6$ or multiple eg $9 x=12$
	$3 \times \frac{4}{9}$	M 1	$(x=) 12 \div 9$
	$\frac{12}{9}$	A1	oe $\frac{4}{3} \quad 1 \frac{1}{3} \quad 1.33 \ldots$

Q	Answer	Mark	Comments
21	$\frac{4}{10}$ and $\frac{3}{9}$	M1	
	$\frac{4}{10} \times \frac{3}{9}$	M1	
	$\frac{12}{90}$	A1	oe $\frac{2}{15}$ SC1 $\frac{12}{100}$ or $\frac{16}{90}$ oe

22(a)	$5^{2}(+) 5 \sqrt{7}(+) 5 \sqrt{7}(+)(\sqrt{7})^{2}$	M1	oe 4 terms, at least 3 correct
	$32+10 \sqrt{7}$	A1	
22(b)	$\frac{1}{\sqrt{3} \sqrt{6}} \text { or } \frac{1}{\sqrt{18}} \text { or } \sqrt{18}^{-1}$	M1	
	$\frac{\sqrt{18}}{18}$	M1	
	$\frac{3 \sqrt{2}}{18}=\frac{\sqrt{2}}{6}$	A1	
22(b)	Alternate		
	$\frac{1}{\sqrt{3} \sqrt{6}}$ or $(3 \sqrt{2})^{-1}$	M1	
	$\frac{1}{\sqrt{3} \sqrt{3} \sqrt{2}}=\frac{1}{3 \sqrt{2}}$	M1	
	$\frac{\sqrt{2}}{3 \sqrt{2} \sqrt{2}}\left(=\frac{\sqrt{2}}{3 \times 2}\right)=\frac{\sqrt{2}}{6}$	A1	

