General Certificate Secondary of Education January 2013

Methods in Mathematics (Pilot) 9365

Unit 1 Higher Tier 93651H

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2013 AQA and its licensors. All rights reserved.

COPYRIGHT
AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

M Method marks are awarded for a correct method which could lead to a correct answer.

A Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.

B Marks awarded independent of method.
Q Marks awarded for quality of written communication. (QWC)
M Dep A method mark dependent on a previous method mark being awarded.

BDep A mark that can only be awarded if a previous independent mark has been awarded.
ft Follow through marks. Marks awarded following a mistake in an earlier step.

SC Special case. Marks awarded within the scheme for a common misinterpretation which has some mathematical worth.
oe Or equivalent. Accept answers that are equivalent. eg, accept 0.5 as well as $\frac{1}{2}$
$[a, b] \quad$ Accept values between a and b inclusive.
25.3 ... Allow answers which begin 25.3 e.g. 25.3, 25.31, 25.378.

Use of It is not necessary to see the bracketed work to award the brackets marks.

M1 Higher Tier

\mathbf{Q}	Answer	Mark	Comments

1(a)	$5 x-10(=35)$	M1	$x-2=7$
	$5 x=45$	M1	$x=7+2$
	9	A1 ft	$\mathrm{ft} \mathrm{For} \mathrm{M1M0} \mathrm{or} \mathrm{M0M1}$
1(b)	$9 y-12=3 y$	M1	or $6 y-9 y(=-3 y)$
	13-1 (= 12)	M1	or 1-13 (=-12)
	4	A1 ft	ft For M1M0 or M0M1 with only one rearrangement error

2(a)	$1-0.2-0.15-0.3$	M 1	$1-0.65$
	0.35	A 1	oe
2(b)	200×0.15 or $\frac{30}{200}$	M 1	
	30	A 1	SC 1170
2(b) Alt	$200-(200 \times 0.2+200 \times 0.3+200 \times$ their 0.35$)$	M 1	
	30	A 1	SC 1170

3(a)	Circle $A=(b-c)^{2}$	B1	Any indication
3(b)	Circle $S=\frac{q^{3}}{\sqrt{r}}$	B1	Any indication

4(a)	3×4 (=12)	M1	$7=3 x-6$
	$12-6=6$	A1	$x=4.3$
4(a)	Correct line from $x=3$ to $x=4$	M1	
	Correct line from $x=3$ to $x=4$ and plots (4, 7) or writes correct justification	A1	
	3×4 (= 12)	Line should be $y=3 x-5$	M1

Q	Answer	Mark	Comments
4(b)	$0=3 x-6$	M1	
	2,0	A1	
	Correct line from $x=1$ to $x=2$ or correct line from $x=2$ to $x=3$	M1	
	2,0	A1	

5	$\frac{3}{4}-\frac{1}{8}\left(=\frac{5}{8}\right)$ oe or $\frac{6}{8}$ seen	M1	
	45 (litres) $=$ their $\frac{5}{8}$	M1	
	$45 \div$ their 5 (=9)	M1	Their 5 cannot be 1 or 2
	72	A1	SC2 60
$\begin{gathered} 5 \\ \text { Alt } 1 \end{gathered}$	Diagram with $\frac{1}{8}$ and $\frac{6}{8}$ indicated	M1	oe
	45 identified between $\frac{1}{8}$ and $\frac{6}{8}$	M1	
	Each section $=9$	M1	
	72	A1	SC2 60
$\begin{gathered} 5 \\ \text { Alt } 2 \end{gathered}$	$\frac{x}{8}+45=\frac{3 x}{8}$	M1	oe
	$x+360=6 x$	M1	oe
	$360=5 x$	M1	
	72	A1	SC2 60

6	4.5×10^{3} or $\frac{45}{10000}$	M1	
	0.0045 or $\frac{9}{2000}$	A1	SC1 number given in standard form with negative index and then correctly changed to decimal.

\mathbf{Q}	Answer	Mark	Comments

7(a)	0.16 or 200 and 'most trials'	B2	oe B1 0.16 or 200 with no or incomplete reason B1 No relative frequency or number of trials, but 'the most trials' given
7(b)	$0.13 \times 100(=13)$ or $0.14 \times 50(=7)$	M1	oe
	Their $13-$ their 7	M1Dep	
	6	A1	

8	1.1 or 110%	B1	
	$517 \div 1.1$	M1	$517 \div 110 \times 100$
	470	A1	

9	$3 x-(x-5)$	M1	Condone omission of brackets
	$2 x+5=17$	M1	
	6	A1	SC2 11
$\begin{gathered} 9 \\ \text { Alt } \end{gathered}$	$2^{3 x}=2^{17} \times 2^{x-5}$	M1	
	$3 x=12+x$	M1	
	6	A1	SC2 11
$\begin{gathered} 9 \\ \text { Alt } 2 \end{gathered}$	Substitutes a value for x and evaluates correctly as a power of 2 .	M1	
	Substitutes a different value for x and evaluates correctly as a power of 2 which is closer to 17 .	M1	
	6	A1	SC2 11

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

10	$x^{-\frac{2}{3}}$ or $a=-\frac{2}{3}$	B3	B2 $\left(x^{\frac{-1}{3}}\right)^{2}$ or $\left(x^{2}\right)^{\frac{-1}{3}}$ or $\left(x^{\frac{2}{3}}\right)^{-1}$ or $\left(x^{-2}\right)^{\frac{1}{3}}$ or $\left(x^{\frac{1}{3}}\right)^{-2}$ or $\frac{1}{x^{\frac{2}{3}}}$ or $-\frac{2}{3}$
B1 $(\sqrt[3]{x})^{-2}$ or $\left(\sqrt[3]{\left.x^{2}\right)^{-1}}\right.$ or $\left(\frac{1}{x^{2}}\right)^{\frac{1}{3}}$			
or $\frac{1}{\left(x^{2}\right)^{\frac{1}{3}}}$ or $\left(\frac{1}{\sqrt[3]{x}}\right)^{2}$ or base x with any			
negative index.			

11	$\begin{aligned} & a b x^{2}+a^{2} x+b^{2} x+a b \\ & \text { or } a b=10 \end{aligned}$	M1	
	Identifies 1 and 10 or 2 and 5	M1	
	29 or 101	A1	
	29 and 101	A1	Correct answer gets all 4 marks
$\begin{aligned} & 11 \\ & \text { Alt } \end{aligned}$	$(x+10)(10 x+1)$	M1	$(2 x+5)(5 x+2)$
	$10 x^{2}+100 x+x+10$	M1	$10 x^{2}+4 x+25 x+10$
	29 or 101	A1	
	29 and 101	A1	Correct answer gets all 4 marks
12	$\begin{aligned} & (6800 \div 10)+(6800 \div 100) \times 2 \\ & (=816) \end{aligned}$	M1	$\begin{aligned} & 680+2 \times 68 \\ & 6800 \times 0.12 \end{aligned}$
	6800 + their 816	M1 dep	6800×1.12 gets M2
	7616	A1	

\mathbf{Q}	Answer	Mark	Comments

13	0.84	B1	$\text { oe } \frac{84}{100}$
	$17 \div 20$ attempted	M1	$\frac{17 \times 5}{20 \times 5}$
	0.85	A1	$\frac{85}{100}$
	$\frac{17}{20}$ selected and 0.84 and 0.85	Q1	oe QWC - strand (ii) - writing both as decimals or both as percentages or both as fractions with same denominator and correct decision for their working
13	0.84	B1	oe $\frac{84}{100}$
	$\frac{\text { their } 84 \div 5}{20}$	M1	
	$\frac{16.8}{20}$	A1ft	ft from BOM1
	$\frac{17}{20}$ selected and $\frac{16.8}{20}$	Q1	QWC - strand (ii) - writing both as a fraction with 20 as denominator and correct decision for their working

14(a)	$\frac{6}{15}$	B1	oe $\frac{2}{5}$
14(b)	$\frac{5}{15}$	B1	oe $\frac{1}{3}$
14(c)	$\frac{7}{10}$	B2	oe B1 correct numerator with incorrect denominator or incorrect numerator with correct denominator

Q	Answer	Mark	Comments
15	$3 \leqslant n$	B1	
	$n<7$	B1	
	$3,4,5,6$	B1ft	ft their double-sided inequality Correct answer gets 3 marks ft their inequality SC2 3, 4, 5, 6 with one incorrect answer or any three of 3, 4, 5, 6 with no incorrect answers SC1 any two of 3, 4, 5, 6 with no incorrect answers or any three of $3,4,5,6$ with one incorrect answer

16(a)	$x+10$	Q1	QWC Strand (i) - Correct notation
16(b)	$3 x+2 \times$ their $(x+10)=95$	B1ft	oe $3 x+2 x+20=95$ $5 x+20=95$ ft their $x+10$
$\mathbf{1 6 (c)}$	Their $(5 x+20)=95$	M1	Simplification of their equation(from at least two terms in $x)$ May be in part (b)
	(95-their 20) \div their 5	M1	Their 5 cannot be 1
	15	A1	

17	(c $=$) - 2	B1	Correct y values identified or plotted for $x=$ 0,2 and 3
	Plots or identifies at least two correct points	B1 ft	$\begin{aligned} & \text { from }(-3,7)(-2,2)(-1,-1)(0,-2) \\ & (2,2)(3,7) \end{aligned}$ ft their c
	Plots all correct points	B1 ft	ft their C
	Joins points with smooth curve	B1 ft	Within 1 small square of each point ft their points
18	$(x+2)(x+7)$	B2	Either order B1 for $(x+a)(x+b)$ where $a+b=9$ or $a b$ $= \pm 14$

Q	Answer	Mark	Comments
19 $8 x+4 y(=11+7 y)$ M1 $2 x+y=\frac{11+7 y}{4}$ $8 x=11+7 y-4 y$ M1 $8 x=11+3 y$ $2 x=\frac{11+7 y}{4}-y$ Separates variables $x=\frac{11+3 y}{8}$ A1ft ft M1M0 or M0M1 and only one error in expansion or rearrangement SC2 $\frac{11+3 y}{8}$			

$\mathbf{2 0}$	$8 x^{15} y^{3}$	B2	B1 For any two correct

$\left.\begin{array}{|c|lllll|l|l|}\hline 21 & x^{2} & x & \sqrt{x} & x^{0} & \frac{1}{x} & & \text { B2 }\end{array} \begin{array}{l}\text { B1 for only one out of place } \\ \text { B1 correct evaluation of at least two of first } \\ \text { four terms with } 0<x<1 \\ \text { SC1 reverse order }\end{array}\right]$.

22(a)	$\sqrt{2 \times 32}$ or $\sqrt{64}$ or $(\sqrt{2} \times) 4 \sqrt{2}$ or $2 \sqrt{16}$ or $(\sqrt{2} \times) \sqrt{2} \sqrt{16}$	M1	
	8	A1	
22(b)	$\frac{21 \sqrt{7}}{\sqrt{7} \sqrt{7}}$ or $\frac{21 \sqrt{7}}{7}$ or $\frac{21 \sqrt{7}}{\sqrt{49}}$	M1	
	$3 \sqrt{7}$	A1	

\mathbf{Q}	Answer	Mark	Comments

23	$\frac{7}{11}(\times) \frac{6}{10}\left(=\frac{42}{110}\right)$ or $\frac{4}{11}(\times) \frac{3}{10}\left(=\frac{12}{110}\right)$	M1	oe Can be on tree diagram
$\frac{7}{11} \times \frac{6}{10}\left(=\frac{42}{110}\right)$ and $\frac{4}{11} \times \frac{3}{10}\left(=\frac{12}{110}\right)$	M1		
Their $\frac{42}{110}+$ their $\frac{12}{110}$	M1 Dep	Dep on M2	
$\frac{54}{110}$	A1	oe $\frac{27}{55}$	

