AQA

GCSE
 Methods in Mathematics
 (Linked Pair)

Foundation Tier Unit 1 Algebra and Probability
Mark scheme

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

M	Method marks are awarded for a correct method which could lead to a correct answer.
M dep	A method mark dependent on a previous method mark being awarded.
A	Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.
B	Marks awarded independent of method.
B dep	A mark that can only be awarded if a previous independent mark has been awarded.
Q	Marks awarded for quality of written communication.
ft	Follow through marks. Marks awarded for correct working following a mistake in an earlier step.
SC	Special case. Marks awarded for a common misinterpretation which has some mathematical worth.
oe	Or equivalent. Accept answers that are equivalent. eg accept 0.5 as well as $\frac{1}{2}$
[a, b]	Accept values between a and b inclusive.
25.3...	Allow answers which begin 25.3 e.g. 25.3, 25.31, 25.378.
Use of brackets	It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a candidate has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the candidate. In cases where there is no doubt that the answer has come from incorrect working then the candidate should be penalised.

Questions which ask candidates to show working

Instructions on marking will be given but usually marks are not awarded to candidates who show no working.

Questions which do not ask candidates to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Candidates often copy values from a question incorrectly. If the examiner thinks that the candidate has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.
Work replaced
Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Q	Answer	Mark	Comments
1 (a)	$\frac{7}{10}$	B1	
1 (b)	500000	B1	
1 (c)	47.78	B1	
2 (a)	C	B1	
2 (b)	D	B1	
2 (c)	A and D	B1	Either order

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

2 (d)	$2,5,5, x$ where x is any number other than 2	B2	Any order Condone a blank space for x B1 One of the criteria met, i.e. one 2 or two or more 5 s	
	Additional Guidance			
	The Answer spinner takes precedence but if this is blank mark the Practice spinner			
	Allow use of decimals/fractions/negatives			
	Examples:			
	$\begin{array}{llll}5 & 5 & 2\end{array}$			B2
	552 blank			B2
	$\begin{array}{cccc}5 & 4 & 2 & -2\end{array}$			B1
	$\begin{array}{lllll}5 & 5 & 5 & 5 & \text { (2 missing) }\end{array}$			B1
	$\begin{array}{llll}5 & 5 & 2 & 2\end{array}$ (too many 2s)			B1
	$\begin{array}{llll}5 & 4 & 2 & 1\end{array}$			B1
	$\begin{array}{llllll}5 & 5 & 3 & 1\end{array}$			B1
	$\begin{array}{lllll}4 & 3 & 2 & 1\end{array}$ (no 5s)			B1
	5431 (not enough 5s and 2 missing)			B0

3	$\begin{aligned} & 60 \times 3 \text { or } 180 \\ & \text { or } \\ & 60 \div 4 \text { or } 15 \\ & \text { or } \\ & 60 \times 3.25 \end{aligned}$	M1		
	195	A1	SC1 189	
	Additional Guidance			
	60×3.15			M0

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

4	Alternative method 1			
	$12 \div 3 \text { or } 4$ or $4 \times 3=12$ or their $4+10$ or $(x-10) \times 3=12$ or reverse flow diagram showing $\div 3$ and +10 in the correct order	M1	If their first operation is incorrect they can still get M1 by adding 10 oe any letter or symbol	
	14	A1	SC1 46 or -6	
	Alternative method 2			
	Trial of any number correctly evaluated	M1	eg $13-10=3, \quad 3 \times 3=9$	
	14	A1	SC1 46 or -6	
	Additional Guidance			
	$12+10 \div 3$ or $(12+10) \div 3$			MO AO

6	Alternative method 1		
	$1+0.5+0.1$ or 1.6(0)	M1	oe using pence
	$24 \div$ their $1.6(\times 3)$ or 15	M1	oe using pence
	45	A1	SC1 104 or 312
	Alternative method 2		
	Works out a total value using the same number of coins in each box	M1	
	15 (coins in each box)	M1	
	45	A1	SC1 104 or 312
	Additional guidance for Q 6 is overleaf		

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

6	Additional Guidance		
	The table gives the values for 1 to 20 coins in each box:		
	Number of coins in each box	Total number of coins	Value ($£$)
	1	3	1.60
	2	6	3.20
	3	9	4.80
	4	12	6.40
	5	15	8.00
	6	18	9.60
	7	21	11.20
	8	24	12.80
	9	27	14.40
	10	30	16.00
	11	33	17.60
	12	36	19.20
	13	39	20.80
	14	42	22.40
	15	45	24.00
	16	48	25.60
	17	51	27.20
	18	54	28.80
	19	57	30.40
	20	60	32.00
	For the SC: 104 is from a misconception 312 is from a misconception	at each box con at each box con	$\begin{aligned} & \text { s } £ 8 \\ & \text { s } £ 24 \end{aligned}$

$\mathbf{7 (a)}$	False True True	B3	B1 for each

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

$\mathbf{7}$ (b)	(0.5, 2.5)	B1			
	Additional Guidance				
	If the answer line blank, check for the point marked on the grid with coordinates given				

8	Correct conversion of either fraction to a decimal or percentage or converts both fractions to a common denominator with at least one numerator correct or correctly expresses percentage or decimal in fraction form	M1	$\frac{13}{20}=0.65 \text { or } 65 \%$ or $\text { eg } \frac{65}{100} \text { and } \frac{64}{100}$ 64 correct or eg $\frac{64.5}{100}$ or $\frac{635}{1000}$	64 or 64\% one of 65 ,
	Conversion to a common form with all correct and 0.635	A1	Answer may be given Condone omission of from working if answ	of 64.5\%
	Additional Guidance			
	The correct answer on the answer line is not automatically 2 marks. The working needs to be checked			
	Answer line: $0.635 \quad \frac{16}{25} \quad 64.5 \% \quad \frac{13}{20}$	with all required working		M1 A1
	Answer line: $\quad \frac{13}{20} \quad 64.5 \% \quad \frac{16}{25} \quad 0.635$	with all required working		M1 A0

9	$\begin{aligned} & 3 \times-5 \text { and } 4 \times 2 \\ & \text { or } \\ & -15 \text { or } 8 \end{aligned}$	M1	
	-7	A1	SC1-23

11	$(x=) 3 \times 12$ or 36 or $(y=) 15 \div 3$ or 5	M1	
	41	A1	

$12(a)$	600×0.95	$B 1$	

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

| Q Answer | Mark | Comments |
| :--- | :--- | :--- | :--- |

Alternative method 1

$(100-65)(\%)$ or $35(\%)$	M1	oe
$(65-$ their 35$)(\%)$ related to 12 or $30(\%)$ related to 12	M1	
$12 \div$ their $30 \times$ their 35 or $12 \div$ their 30×100 or 40	M1	oe 40 is the total number of members
14	A1	SC3 26

Alternative method 2

$(65-50)(\%)$ or $15(\%)$	M1	
Their $15(\%)$ related to 6	M1	
$6 \div$ their $15 \times(100-65)$ or $6 \div$ their 15×35 or $6 \div$ their 15×100 or 40	M1	
14	A1	SC3 26

Alternative method 3

65 and $(100-65)$ or 65 and 35	M1	
13 and 7	M1	
26 and 14	M1	
14	A1	SC3 26

Alternative method 4

Any trial of two numbers with a difference of 12 or of 65% and 35% of an assumed total	M1	eg 13 and 1 and [93, 93]\% or $60 \rightarrow 39$ girls and 21 boys
A better trial	M1dep	eg 14 and 2 and [87, 88]\%
A better trial	M1dep	eg 15 and 3 and [83, 84]\%
14	A1	SC3 26

\mathbf{Q}	Answer	Mark	Comments

Q	Additional Guidance	
14	Percentage signs might be missing from students' work $65-45=20 \quad$ (45 taken to be 45\%, the (incorrect) percentage of boys) $20=12 \quad($ read as $20 \%=12)$ $10=6 \quad($ read as $10 \%=6)$ $5=3$ Boys $=12+12+3=27$	MO M1 M1 A0

15 (a)	446	B1		
15 (b)	108	B1		
15 (c)	17	B1		
15 (d)	11	B1		
16		B2	B1 One line adds to 10 using the digits 1,3 or 5	
	Additional Guidance			
	The Answer grid takes precedence but if this is blank mark the Practice grid			

$\mathbf{1 7}$ (a)	Any point in the top left quadrant ie $x<0$ and $y>0$	B1	Condone missing label

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

$\mathbf{1 7}$ (b)	Any point on the line $2 y=x$	B1	Condone missing label SC1 If answer to (a) is in the 4h quadrant then any point on the line $y=2 x$

$\mathbf{1 7}$ (c)	Any point on the x axis or y axis	B1	Including the origin Condone missing label

18 (a)	1.2	B1	
	An indication that probability must lie in the range 0 to 1 or cannot be greater than 1	B1	
	Additional Guidance		
	Take "between" to mean including the end points		
	Explanations may use percentages but the percentage sign must be present		
	Examples		
	It has to be between 0 and 1		B1
	All probabilities add up to 1		B1
	Probabilities have to be under 1		B0
	It's too big		B0

$\mathbf{1 8 (b)}$	0.7	B1	oe
19	1 1 2 3 n 3 2 3 4 where n is an integer greater than 3	B2	B1first value correct or inner two values correct

Q	Answer	Mark	Comments	
20	$20 \div 5 \quad$ or $\quad 4 \quad$ or $\quad \frac{4}{20}$ or $1-\frac{1}{5} \text { or } \frac{4}{5}$	M1	oe oe	
	20 - their 4 or $20 \div 5 \times 4$ or 16 or two whole numbers with a total of (20 - their 16)	M1dep	oe eg 10 and 6 Allow the numbers as numerators of fractions with 20 as the denominators	
	7	A1	$\operatorname{SC2} \quad \frac{7}{20}$	
	Additional Guidance			
	For the first M1, $\frac{4}{5}$ can be implied by two fractions (for orange and yellow) which add to 1			

$\mathbf{2 1}$ (a)	True True False	B2	B1 any two correct

| 21 (b) | 100 | B2 | B1 $\quad\left(5^{3}=\right) 125$ or $\quad\left(5^{2}=\right) 25$ |
| :--- | :--- | :--- | :--- | :--- |

$22(a)$	27	B1	

$\mathbf{2 2}$ (b)	4.06	B1	
$\mathbf{2 2}$ (c)	13	B1	

\mathbf{Q}	Answer	Mark	Comments

22 (d)	$378+420$ or $392+406$ or $392+392+14$ or $378+378+3 \times 14$ or $364+364+5 \times 14$ or $350+350+7 \times 14$	M1	oe	
	798	A1		
	Additional Guidance			
	798 scores 2 marks (obtained by any correct method)			
	M1 may be scored for any fully correct method which uses a value or values in the table and a single digit multiplication of 14$\text { eg } 420 \times 2-3 \times 14$			M1
	There is no method mark for long multiplication, so 57×14 is 2 (if 798 obtained) or 0 (if not)			

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

Alternative method 1		
$3 x+12=28.5$	M1	
$3 x=28.5-12$ or $3 x=16.5$	M1	
($x=$) 5.5	A1ft	ft M1M0 with one er
$(A=) 28.5$ and $(B=) 29.5$ and Yes	Q1ft	Strand (iii) Correct decision for must be correct for
Alternative method 2		
28.5-12 or 16.5	M1	
Their $16.5 \div 3$	M1	
$(x=) 5.5$	A1ft	ft M1M0 or M0M1 w
$(A=) 28.5$ and $(B=) 29.5$ and Yes	Q1ft	Strand (iii) Correct decision for must be correct for
Alternative method 3		
$5 x+1=3 x+12$	M1	
$5 x-3 x=12-1$ or $2 x=11$	M1	
($x=$) 5.5	A1ft	ft M1M0 with one er
($A=$) 28.5 and $(B=) 29.5$ and Yes or $(C=) 28.5$ and $(B=) 29.5$ and Yes	Q1	Strand (iii)
Additional Guidance		
Their error could be adding 12 instead of subtracting.		
On alt 2 , if they start with an incorrect value for x, they can achieve the Q1ft for only working out that A is not 28.5 and saying ' $N o$ '		

\mathbf{Q}	Answer	Mark	Comments

24	$\frac{5 \times 4}{8}$ or $\frac{20}{8}$ or $2 \frac{4}{8}$ or 2.5	M1	oe
	$2 \frac{1}{2}$	A1	
	$\frac{10}{4}$ or $\frac{5}{2}$	Additional Guidance	M1A0

\mathbf{Q}	Answer	Mark	Comments

26 (a)	Alternative method 1		
	$(P(A)=) 2 \times 0.12$ or 0.24	M1	oe
	$(P(D)=) 1-(\text { their } 0.24+0.12+0.28)$ or $1-0.64$ or 0.36	M1	oe
	$1-(0.24+0.12+0.28)=0.36$ and $0.12 \times 3=0.36$	Q1	oe Strand ii All working correct
	Alternative method 2		
	$(P(D)=) 3 \times 0.12$ or 0.36	M1	oe
	$(P(A)=) 1-(0.12+0.28+\text { their } 0.36)$ or $1-0.76$ or 0.24	M1	oe
	$1-(0.12+0.28+0.36)=0.24$ and $0.12 \times 2=0.24$	Q1	oe Strand ii All working correct
26 (b)	0.28×200	M1	oe
	56	A1	Allow $\frac{56}{200}$
	62	A1ft	ft their $56+6$ if M1 scored

