GCSE
 Methods in Mathematics

93651F: Foundation Tier
Mark scheme

9365
June 2016

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

M Method marks are awarded for a correct method which could lead to a correct answer.

A

B
ft

SC

Mdep A method mark dependent on a previous method mark being awarded.

B dep A mark that can only be awarded if a previous independent mark has been awarded.
oe \quad Or equivalent. Accept answers that are equivalent. eg, accept 0.5 as well as $\frac{1}{2}$
$[a, b] \quad$ Accept values between a and b inclusive.
3.14... Allow answers which begin $3.14 \mathrm{eg} 3.14,3.142,3.149$.

Use of brackets
It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a candidate has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the candidate. In cases where there is no doubt that the answer has come from incorrect working then the candidate should be penalised.

Questions which ask candidates to show working

Instructions on marking will be given but usually marks are not awarded to candidates who show no working.

Questions which do not ask candidates to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Candidates often copy values from a question incorrectly. If the examiner thinks that the candidate has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the candidate intended it to be a decimal point.

Q Answer	Mark	Comments	
1(a)	3500	B1	
1(b)	7	B1	
1(c)	$\frac{1}{5}$	B1	

Q	Answer	Mark	Comments

	$\begin{aligned} & 2 \times 5+10+2 \times 20+2 \times 50+ \\ & 2 \times 100 \quad \text { or } 360 \end{aligned}$	M1	oe in $£$	
	Their $360 \div 3$ or 120	M1	oe in $£$	
	£1 20p 50p 50p 20p £1 10p $5 p$ 5p	A1	SC2 2 totals the same (other than $£ 1.20$) with the correct number of coins for all three persons SC1 2 totals the same (other than $£ 1.20$) with the correct number of coins for those 2 persons but not the third person	
	Additional Guidance			
	Condone eg (£) 0.20p as 20p			
	If a coin is used more than once (eg 10p used twice), a candidate could still achieve M2 or SC1			
2	At least 2 persons given £1.20 but not using the correct coins implies M2			
	One person given $£ 1.20$ and the other two persons blank implies 120p			M1 M1 A0
	A: £1 20p B: $£ 120 \mathrm{p}$ C: 50p 50p 10p 5p 5p			M1 M1 A0
	A: $£ 110 \mathrm{p}$ B: $£ 15 p 5 p$ C: 50p 50p 20p 20p			SC2
	A: £1 10p B: $£ 15 p 5 p$ C: blank			SC1
	A: $£ 15 p$ B: $£ 15 p$ (B should have 3 coins) C: 50p 50p 20p 20p 10p			M0 M0 A0

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

3 (the | Two arrows from the same event is choice and scores B0 for that event |
| :--- |
| (though the candidate may still score if other events are correct) |
| Two arrows to the same chance may score a mark if one of the arrows is |
| correct |

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

5	$\frac{73}{100}$ or 0.73 or 73% $\frac{39}{100}$ or 0.39 or 39% $\frac{21}{100}$ or 0.21 or 21%	B3	oe fraction B1 each SC1 73 consistently	
	Additional Guidance			
	Withhold the mark for 'in' or 'out of' on the first occasion only			
	Ignore descriptive words such as 'likely', 'unlikely', etc			
	73 : 100 and 39 : 100 and 21 : 100			

$\mathbf{6 (a)}$	$2 n-1$	B1	
$\mathbf{6 (b)}$	$4 n$	B1	

6(c)	Indicates any value of n for which $2 n+1$ is not prime	B1	$\text { eg } \begin{aligned} & n=0 \\ & \\ & n=4 \\ & n=7 \end{aligned}$	$\begin{aligned} & (2 n+1=1) \\ & (2 n+1=9) \\ & (2 n+1=15) \end{aligned}$	
	Additional Guidance				
	n must be zero or a positive integer				
	Although the value of $2 n+1$ does not have to be evaluated, withhold the mark if an incorrect evaluation is shown eg answer 4 with $24+1=25$				B0
	Allow the value of n or the evaluation of the expression (with working shown) on the answer line eg $\quad 2 \times 7+1=15$ followed by 7 or 15 on the answer line				B1
	Check the working, eg $2 \times 3+1=7$ followed by 7 on the answer line				B0

\mathbf{Q}	Answer	Mark	Comments

7	$40 \div 5$ oe or 8 or $\frac{8}{40}$	M 1	
	$150-$ their 8×3 or $150-24$ or 126	M 1	
	Their $126 \div 7$ or 18 or $18 \times 7=126$	M1dep	dep on M1 M1
	14	A 1	

$\mathbf{8 (a)}$	64	B1	

8(b)	21	B1	

Q	Answer	Mark	Comments

Alternative method 1

$\sqrt[3]{10648}$ or 22 or $22^{3}=10648$	M1	
$46^{3}=97336$ or $47^{3}=103823$	M1	
22 or $22^{3}(=10648)$ and $46^{3}=97336$ and $47^{3}=103823$ and $46-21=25$ oe or $47-22=25$ oe or shows all correct values from 23^{3} to 45^{3}	Q1	Strand (ii) Correct method and values

Alternative method 2

$\sqrt[3]{10648}$ or 22	M1	
$\sqrt[3]{99999}=46(\ldots)$	M1	
22 or $22^{3}(=10648)$	Q1	Strand (ii) SC1 Any 5 correct cube numbers from 12167 to 97336
and $\sqrt[3]{99999}=46(\ldots)$ $46-21=25$ oe or $47-22=25$ oe		

Additional Guidance
The other cube values are:

23	12167	29	24389	35	42875	41	68921
24	13824	30	27000	36	46656	42	74088
25	15625	31	29791	37	50653	43	79507
26	17576	32	32768	38	54872	44	85184
27	19683	33	35937	39	59319	45	91125
28	21952	34	39304	40	64000		

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

Q	Answer	Mark	Comments

Q	Answer	Mark	Comments

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

12(a)	8	B1			
	Additional Guidance			B0	
	Do not accept $\times 8$				

13(a)	D	B1	

$\mathbf{1 3 (b)}$	Any 8 squares shaded	B1			
	Additional Guidance				
	Allow fractions of squares (eg half squares) to be shaded but the total shading must be equivalent to 8 full squares for B1				

14(a)	D	B1	

14(b)	B	B1

Q	Answer	Mark	Comments	
14(c)	x-coordinate >3.5 and y-coordinate >6	B2	B1 x-coordinate >3.5 or y-coordinate >6 or plots a correct point on the grid but does not give the correct coordinates or draws lines $x=3.5$ and $y=6$ or $(3.5,6)$	
	Additional Guidance			
	If the answer line is blank and more than one point is plotted on the grid, then all points must be correct for B1			

15	10	B1	
	112	B1	

16(a)	$-3-5$	B1

$\mathbf{1 6 (b)}$	-1 and 6 or 6 and -1	B1	

$\mathbf{1 7 (a)}$	$32-8$ or 24 or $1000-8$ or 992 or 32×32	M1	
	1024	A1	SC1 Any multiple of 32 greater than 1000

17(b)	62 and 16 in that order	B1	

Q	Answer	Mark	Comments	
18(a)	33 or 24	M1		
	($F=$) 9	A1		
18(b)	$12 a-4 a(=4 b) \text { or } 8 a(=4 b)$ or Substitutes values into $P=4 a+4 b$ for P and a such that $P=12 a$	M1	eg $24=8+4 b($ from $a=2$ and $P=24)$	
	1:2	A1	oe SC1 2:1 oe	
	Additional Guidance			
	Allow letters in the final answer, for example:			
	2a:4a			M1 A1
	$2 P: P$			SC1
19(a)	8	B1		
19(b)	$2-(3+4)+5=0$	B1	Ignore superfluous brackets	
	$(1+3) \times 5+7=27$	B1		
	$(1+2) \times(3+4)=21$	B1		

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

20(a)	All the marbles are red	B1	oe	
	Additional Guidance			
	There are no other colours			B1
	It's full of red marbles			B1
	You are certain to pick a red marble			B1
	All the green and blue marbles have been taken out			B1
	There is only 1 marble in the bag (and it is red)			B0
	The bag contains red marbles			B0
	There's a lot of red marbles in the bag			B0
	Most are red because it's certain			B0
	All are red which makes it likely to pick one			B0

	There might not be the same number of each colour	B1	oe
	Additional Guidance		B1
	There might be an odd number of marbles in the bag	B1	
	She doesn't know how many of each colour are in the bag	B0	
	She doesn't know how many marbles are in the bag	B0	
	She hasn't included the green marbles		

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

20(c)	The probabilities do not add up to 1	B1	oe	
	Additional Guidance			
	Ignore calculation errors if it is stated that the sum of the probabilities does not equal 1 or 100%			
	Green should be 0.5			B1
	The probabilities add up to 1.1 (not 1)			B1
	The probabilities add up to 0.8 not 1			B1
	The probabilities don't add up to a whole (one)			B1
	The probabilities don't add up to a whole number			B0

21	$60 \div 400(\times 100) \quad$ or $0.15(\times 100)$ or $60 \div 4$ or $\frac{3}{20}$ or equivalent fraction		
	15	M1	$\frac{60}{400}$ or $\frac{30}{200}$ or $\frac{15}{100}$

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

22	Correct coordinates worked out for at least two points with at most two incorrect points						M1	May be given in a table					
	At least two correct points plotted with at most one incorrect point						M1						
	Correct ruled line from $(-1,-6)$ to$(4,14)$						A1		SC1 An incorrect straight line drawn with gradient 4 or y-intercept -2				
	Additional Guidance												
	The correct line seen scores M1 M1 A1 (irrespective of the points plotted)												
	For the first M mark: coordinates can be given as embedded values the mark can be implied by the plotted points												
	Table of values:												
	x	-1	-0.5	0	0.5	1	1.5	2	2.5	3	3.5	4	
	y	-6	-4	-2	0	2	4	6	8	10	12	14	

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

Alternative method 1

$\frac{3 \times 8+1}{8}$ or $\frac{25}{8}$	M1	Conversion to a fraction
$\frac{\text { their } 25}{2 \times 8}$ or $\frac{\text { their } 25}{16}$ or $\frac{25}{16}$	M1	oe must be a fraction or mixed number, but condone decimal numerators
$1 \frac{9}{16}$	A1	oe mixed number SC2 1.5625

Alternative method 2

$1 \frac{1}{2} \text { and } \frac{1}{16}$	M1	oe	
$\frac{24}{16}+\frac{1}{16}$ or $\frac{25}{16}$	M1	oe must have a common den	
$1 \frac{9}{16}$	A1	oe mixed number $\text { SC2 } 1.5625$	
Additional Guidance			
$1.5 \frac{1}{16}$			M1
$1 \frac{4.5}{8} \text { or } \frac{12.5}{8}$			M1 M1
In alt 1 , for the $2^{\text {nd }}$ mark a fraction in the form $\frac{m}{n}$ should become $\frac{m}{2 n}$ or $\frac{m / 2}{n}$ where $m / 2$ can be a decimal			

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

| $30 \div 5 \times 4$ or 24 | |
| :--- | :--- | :--- | :--- |

Q	Answer	Mark	Comments

