AQA Qualifications

GCSE
 Linked Pair

Methods in Mathematics Paper 1 Foundation Tier Mark scheme

9365/1F

June 2015

Version 1.0 Final Mark Scheme

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

[^0]
Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

M Method marks are awarded for a correct method which could lead to a correct answer.

M dep A method mark dependent on a previous method mark being awarded.

A Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.

B Marks awarded independent of method.
B dep A mark that can only be awarded if a previous independent mark has been awarded.
ft Follow through marks. Marks awarded following a mistake in an earlier step.

SC Special case. Marks awarded within the scheme for a common misinterpretation which has some mathematical worth.
oe Or equivalent. Accept answers that are equivalent. eg, accept 0.5 as well as $\frac{1}{2}$
$[\mathbf{a}, \boldsymbol{b}] \quad$ Accept values between a and b inclusive.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a candidate has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the candidate. In cases where there is no doubt that the answer has come from incorrect working then the candidate should be penalised.

Questions which ask candidates to show working

Instructions on marking will be given but usually marks are not awarded to candidates who show no working.

Questions which do not ask candidates to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Candidates often copy values from a question incorrectly. If the examiner thinks that the candidate has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.
Work replaced
Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

| 1(a) | $(0) .25$ | B1 | Allow any number of zeros after the 5 |
| :---: | :--- | :---: | :--- | | 1(b) | $(0) .3$ | B1 | Allow any number of zeros after the 3 |
| :---: | :--- | :---: | :--- |

$\mathbf{1 (c)}$	$\frac{9}{10}$ or (0).9	B1	oe For the decimal answer, allow any number of zeros after the 9

1(d)	$\frac{25}{40}$	B1	

2(a)		B3	B1 each correct answer Allow any indication
	Additional Guidance		
	Two lines/arrows from the same event to two or more different chances cannot score that particular B mark (even if one of them is correct) ie NOT (for example)		
	Two or more lines/arrows going from different events to the same chance, may still score a mark (if one of the lines/arrows is correct)		

| A 'Yes' B4 B1 for each one correct
 B 'No'
 C 'Yes'
 D 'No' |
| :---: | :--- | :---: | :--- |

4(a)	an expression	B1	

4(b)	an inequality	B1			
4(c) a formula B1 Condone both 'an equation' and 'a formula' circled 4(d) $10 a$ B1				$.$	
:---					

\mathbf{Q}	Answer	Mark	Comments

Alternative Method 1			
$1+2+2+5+10+10+25+25+50$ or 130	M1	Allow an omission or duplication of 1 card If no sum seen allow $80 \leq$ total ≤ 180 as evidence of adding	
Their $130 \div 2$ or 65	M1dep		
$\begin{aligned} & 50,10,5 \text { and } 25,25,10,2,2,1 \\ & \text { or } \\ & 50,10,2,2,1 \text { and } 25,25,10,5 \end{aligned}$	A1	Either order SC1 $25,10,5$ and $25,10,2,2,1$	
Alternative Method 2			
50 in one group and both 25 s in the other	M1		
10 in each group or $30 \div 2 \text { or } 15$	M1 dep		
$\begin{aligned} & 50,10,5 \text { and } 25,25,10,2,2,1 \\ & \text { or } \\ & 50,10,2,2,1 \text { and } 25,25,10,5 \end{aligned}$	A1	Either order SC1 $25,10,5$ and 25,1	$2,2,1$
Additional Guidance			
If answer line is blank check the diagram for an indication of sorting into groups, eg A written by 50,10 and 5			
The second method mark on Alt 1 can be implied by correct sets for half of their total			
Examples: 50, 10 and 25, 25, 10 (by Alt Method 2) 50, 10, 2 and 25, 25, 10, 2 (by Alt Method 2)			M1 M1 AO M1 M1 AO

Q	Answer	Mark	Comments
6(a)	11.05	B1	oe eg $11 \frac{1}{20}$ or $11 \frac{5}{100}$ or $\frac{221}{20}$
6(b)	21	B1	
7	$\sqrt{2025}$ or 45	M1	oe
	(their $45+1)^{2}$	M1dep	
	2116	A1	SC1 1026169

8(a)	2 and any other prime number	B1	Either order

8(b)	Any one of the following: 2, 2, 2 2, 3, 5 2, 2, 11 3, 5, 7 5,5,5 2, 5, 23 2, 11, 17	B1	Numbers can be in any order SC1 1, 2 in (a) and $1,1,1$ or $1,1,3$ or $1,2,2$ or $1,2,3$ or $1,2,7$ or $1,3,11$ or $1,7,7$ in (b)

8(c)	Any four prime numbers with a sum which is a multiple of 25 For example: $\begin{aligned} & 2,3,3,17 \\ & 2,3,7,13 \\ & 3,3,3,41 \\ & 3,5,11,31 \\ & 2,2,2,19 \\ & 7,11,13,19 \\ & \text { etc } \end{aligned}$	B1	Numbers can be in any order SC1 1,2 in (a) and/or 1, 1,1 or $1,1,3$ or $1,2,2$ or 1 $1,2,7$ or $1,3,11$ or $1,7,7$ in and 1 used in an otherwise correct (eg 1, 2, 3, 19)
	Additional Guidance		
	The use of 1 in an otherwise correct answer should not be penalised after the first occasion		

\mathbf{Q}	Answer	Mark	Comments

Alternative Method 1

0.96×625 or 0.04×625	B1	oe correct method to find 96% of 625 or 4% of 625
$\sqrt{625}=25$ or $25^{2}=625$	B1	
$0.96 \times 625=600$ and $625-600=25$ or $0.04 \times 625=25$ and $\sqrt{625}=25$ or $25^{2}=625$	Q1	oe Strand ii Fully correct proof with all working shown SC1 25

Alternative Method 2

$\sqrt{625}=25$ or $25^{2}=625$	B1	
$\frac{25}{625} \times 100$	B1	
or		
$\frac{600}{625} \times 100$	Q1	oe Strand ii Fully correct proof with all working shown SC1 25
$\sqrt{625}=25$ or $25^{2}=625$ and $\frac{25}{625} \times 100=4$ or $\frac{600}{625} \times 100=96$ and $100-96=4$ Additional Guidance 4% of $625=25=\sqrt{625}$ oe It is impossible to score the Q mark without B1 B1		

Q	Answer	Mark	Comments

| $\mathbf{1 0 (b)}$ | $\frac{11}{60}$ | B1 | oe $0.18 \dot{3}$ or 18.3% |
| :--- | :--- | :---: | :--- | :--- |
| | Additional Guidance | If otherwise correct answers to (a) and (b) are only given in words withhold the
 first mark
 For example, ' 25 in 60 ' in (a) and '11 in 60 ' in (b) | B0 B1 |

10(c)		$\frac{6}{}$ or 6 or 9 seen	M1		$\frac{9}{10}$	
			A1		15\%	
	Additional Guidance					
	If otherwise correct answers to (a) and/or (b) and (c) are given in words withhold the first mark only For example, ' 25 in 60 ' in (a) and ' 11 in 60 ' in (b) and ' 9 in 60 ' in (c) ' 14 in 60 ' in (a) and ' 11 in 60 ' in (b) and ' 9 in 60 ' in (c)					B0 B1 M1 A1 B0 B0 M1 A1

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

12(a)	$50-17-20$ or 13	M1	oe
	$\frac{13}{50}$ or 0.26 or 26%	A1	oe $\frac{52}{200}$
	$\frac{13}{200}$	Mdditional Guidance	A0

Q	Answer	Mark	Comments
$\mathbf{1 5 (c)}$	7.5 or $7 \frac{1}{2} \quad$ or $\frac{15}{2}$	B1	
	Additional Guidance		
	Ignore any units written, eg $£, \%$, etc		
	In the decimal form, allow zeros after the '5', eg 7.50	B1	

16(a)	HH HT TH TT	B1	
	0.25 marked on line	B1ft	Any indication Mark intention ft a correct marking from a list of at least 3 pairings

16(b)	(0). 7		B1	oe $\frac{7}{10}, 70 \%$, etc	
	Additional Guidance				
	Ignore descriptive words such as 'likely'				
	0.7 likely (ignore 'likely')				B1
	0.70 (ignore any number of zeros after the 7)				B1
	$\frac{70}{100}$				B1

17(a)	1.26	B1	
$\mathbf{1 7}(\mathbf{b})$ -24 B1			

\mathbf{Q}	Answer	Mark	Comments

17(c)	$\left(\frac{1}{9}+\right) \frac{6}{9}$ or both fractions changed to another common denominator eg 18,27 , etc, with at least one of the numerators correct	M1		
	$\frac{7}{9}$	A1	oe	
	Additional Guidance			
	Ignore incorrect cancelling of a correct answer eg $\frac{21}{27}$ cancelled to $\frac{6}{9}$ (and maybe to $\frac{2}{3}$)			M1 A1

18(a)	-1	B1	

\mathbf{Q}	Answer	Mark	Comments

19	0.1×400 or 40 or 0.9×400	M1	oe
	360	A1	Allow any number x such that $360 \leq x<361$ SC1 359 or 361

\mathbf{Q}	Answer	Mark	Comments

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

21	$7 x+x \text { or } 8 x$ or $-x-7 x \text { or }-8 x$	M1	For M1M1 the rearrangements must be a correct pair: $7 x+x$ or $8 x$ and $3-1$ or 2 or $-x-7 x$ or $-8 x$ and $1-3$ or -2	
	$3-1 \text { or } 2$ or $1-3 \text { or }-2$	M1		
	(0). 25 or $\frac{1}{4}$	A1ft	oe ft M1 M0 or M0 rearrangement o	
	Additional Guidance			
	It is possible that the M1 which scores may not be seen, but implied:$\begin{aligned} & 6 x+1=3 \text { followed by } x=\frac{1}{3} \\ & 7 x=4-x \text { followed by } x=\frac{1}{2} \end{aligned}$			M0 M1 A1 M1 M0 A1
	$8 x$ from $7 x+1$ or 2 from $3-x$ score M0			
	A correct embedded value of 0.25 (oe) scores			M1 M1 A0

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

22	Alternative Method 1		
	$110 \div 2$ or $55(\%)$ or (0).55 or $\frac{55}{100}$	M1	oe $(200-110) \div 2$ or 45 oe and 100-53 or 47 oe
	Zac and 55(\%) or Zac and $\frac{55}{100}$ or Zac and (0). 55 and (0). 53	A1	Zac and 45 and 47
	Alternative Method 2		
	53×2 or 106 or $\frac{106}{200}$	M1	oe $(100-53) \times 2$ or 94 oe and $200-110 \text { or } 90$
	Zac and 106 or Zac and $\frac{106}{200}$	A1	Zac and 94 and 90

23	1 or 100\%	B1	Condone 'Certain'
	Odd + even = odd	B1	
	Additional Guidance		
	For the first mark, accept a probability in the form $\frac{n}{n}$		
	To gain the second mark there must be some reference to odd + even = odd It is not sufficient simply to say the sum is always odd		

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

24(a)	$-3<x<5$ or $5>x>-3$	B2	B1 for either side correct SC1 $-3 \leq x \leq 5$ or $5 \geq x \geq-3$	
	Additional Guidance			If the student writes this as two inequalities award one mark for either or both written correctly $x>-3$ and $x<5$ $x>-3$ and $x>5$

$\left.\begin{array}{|l|l|l|l|}\hline-1,0,1,2 & \text { B2 } & \begin{array}{l}\text { B1 } \\ \frac{-2}{2}, \frac{0}{2}, \frac{2}{2}, \frac{4}{2}\end{array} \\ \text { 24(b) }\end{array} \quad \begin{array}{l}\text { or } \\ -1.5<\frac{x}{2}<2.5 \\ \text { or } \\ \text { any two or three correct values with no } \\ \text { incorrect values } \\ \text { or } \\ \text { all four correct values with one incorrect } \\ \text { or } \\ -1,-0.5,0,0.5,1,1.5,2 \\ \text { or } \\ -1,-\frac{1}{2}, 0, \frac{1}{2}, 1,1 \frac{1}{2}, 2 \\ \text { or } \\ x=-2,0,2,4 \\ \text { or } \\ x=-1,0,1,2\end{array}\right]$

\mathbf{Q}	Answer	Mark	Comments

25(a)	$24 \div 3(\times 2)$ or $8(\times 2)$ or 16	M1		
	40	A1		
	Additional Guidance	M1 A0		

[^0]: Copyright © 2015 AQA and its licensors. All rights reserved.
 AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

