GCSE
 MATHEMATICS 8300/3H

Higher Tier Paper 3 Calculator
Mark scheme

June 2020

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

[^0]Copyright © 2020 AQA and its licensors. All rights reserved.

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

M Method marks are awarded for a correct method which could lead to a correct answer.

A Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.

B Marks awarded independent of method.
ft

SC Special case. Marks awarded for a common misinterpretation which has some mathematical worth.

M dep A method mark dependent on a previous method mark being awarded.

B dep A mark that can only be awarded if a previous independent mark has been awarded.
oe Or equivalent. Accept answers that are equivalent. eg accept 0.5 as well as $\frac{1}{2}$
[a, b] Accept values between a and b inclusive.
$[a, b) \quad$ Accept values $a \leqslant$ value $<b$
3.14... Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416

Use of brackets It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles.

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the student intended it to be a decimal point.

Q	Answer	Mark	Comments
$\mathbf{1}$	A or B or both	B1	

Q	Answer	Mark	Comments
$\mathbf{2}$	$y=\frac{1}{2} x$	B1	

Q	Answer	Mark	Comments
$\mathbf{3}$	400%	B1	

Q	Answer	Mark	Comments
$\mathbf{4}$	$\frac{1}{16}$	B1	

Q	Answer	Mark	Comments	
5(a)	17500		B1	
	Additional Guidance			
	Accept response in words			

Q	Answer	Mark	Comments
5(b)	18499	B1	
	Additional Guidance		
	Accept response in words	B0	
	$18499 . \dot{9}$ or $1849 \dot{9}$		

Q	Answer	Mark	Comments	
6	Two arcs of equal radius or a single arc, centre B, cutting $B A$ and $B C$ or a single arc cutting $B C$ with radius $=B A$	M1	$\pm 2 \mathrm{~mm}$$\pm 2 \mathrm{~mm}$	
	Fully correct method of construction of bisector of angle $A B C$	A1		
	Additional Guidance			
	Award M1 if correct $\operatorname{arc}(\mathrm{s})$ seen alongside incorrect $\operatorname{arc}(\mathrm{s})$			
	Angle bisector does not need to meet $A D$ and ignore angle bisector extended beyond $A D$			
	Accept an arc touching the line $B A$ or $B C$			
	No arcs seen on BC			M0

Q	Answer	Mark	Comments	
7	32^{2} and 60^{2} or 1024 and 3600 or 4624	M1		
	$\begin{aligned} & \sqrt{32^{2}+60^{2}} \text { or } \sqrt{1024+3600} \\ & \text { or } \sqrt{4624} \end{aligned}$	M1dep		
	68	A1		
	Additional Guidance			
	Answer only 68			M1M1A1
	$68=2 \sqrt{17}$ incorrect further workin			M1M1A0
	68 from scale drawing			MOMOAO
	68 from trigonometry			MOMOAO

Q	Answer	Mark	Comments	
9	$\frac{16}{20}$ or $\frac{20}{16}$ or $\frac{12}{20}$ or $\frac{20}{12}$ or 12:9.6 or $9.6: 12$ or $16: 9.6$ or $9.6: 16$	M1	oe eg $16 \div$ eg $\frac{4}{5}$ or $\frac{5}{4}$ eg 0.8 or 1	$6 \ldots \text { or }$
	9.6	A1	oe	
	Additional Guidance			
	Award M1 work even if not subsequently used			
	Ignore further working in an attempt to round after answer 9.6 eg 9.6 in working with answer 10			M1A1
	$12 \times 20 \div 16$			M1

Q	Answer	Mark	Comments	
10	$8 c+12$ or $-5 c+1$	M1	may be seen in a grid implied by $3 c+12+1$	$+13-5 c$
	$3 c+13$	A1		
	Additional Guidance			
	Do not ignore further working $\begin{aligned} & \text { eg } 3 c+13=16 c \\ & \text { eg } 3 c+13, c=\frac{-13}{3} \end{aligned}$			$\begin{aligned} & \text { M1A0 } \\ & \text { M1A0 } \end{aligned}$
	$8 c+12-5 c-1$			M1
	$8 c+3-5 c+1$			M1

Q	Answer	Mark	Comments	
11	Alternative method 1			
	1-0.18-0.62 or 0.2	M1	oe	
	their 0.2×350	M1dep	oe	
	70	A1		
	Alternative method 2			
	0.18×350 or 63 or 0.62×350 or 217 or 0.8×350 or 280	M1	oe	
	350 - their 63 - their 217 or $350-280$	M1dep	oe	
	70	A1		
	Additional Guidance			
	on answer line			M1M1A0
	0.8			MOMOAO

Q	Answer	Mark	Comments	
12	$a=2$ and $b=4$ and $c=5$ or $a=4$ and $b=2$ and $c=5$ or $a=0$ and $b=6$ and $c=5$	B3	B2 $a+b=6$ with integer values of $a \geqslant 0$ and $b \geqslant 1$ B1 $c=5$ or $a+b+c=11$ with integer values of $a \geqslant 0$ and $b \geqslant 0$ and $c \geqslant 0$ or 13 th value $=3$ and 14 th value $=4$ stated or correct median position indicated on a list	
	Additional Guidance			
	Values may be seen alongside or in the table			
	Blank answer line does not indicate zero for that value eg $a=$ \qquad $b=6 \quad c=5$			B1
	$a=2 \quad b=6 \quad c=5$			B1
	$a=11 \quad b=0 \quad c=0$			B1
	$a=6 \quad b=0 \quad c=5$			B1
	$a=6 \quad b=0 \quad c=3$			B0

Q	Answer	Mark	Comments	
13(a)	$\frac{5 a^{2}}{4} \text { or } 1 \frac{1}{4} a^{2}$	B2	B1 correct single fraction not in simplest form eg $\frac{50 a^{2}}{40}$ or $1.25 a^{2}$ or $\frac{5}{4} a$ or $\frac{5 a}{4}$ or $1 \frac{1}{4} a$	
	Additional Guidance			
	Final answer $1.25 a^{2}$ (even if $\frac{5 a^{2}}{4}$ seen in working)			B1

Q	Answer ${ }^{\text {a }}$ Mark		Comments	
13(b)	Valid evaluation	B1	eg she needs to divide 10 by 2 or the answer should be $3 c+5$	
	Additional Guidance			
	Do not award marks when an incorrect statement or incorrect algebra is seen with a correct statement or correct algebra			
	She needs to add 5 not 10			B1
	She must divide all of the numerator by 2			B1
	She must divide everything by 2			B1
	She should divide both sides by 2			B0
	She needs to work out $6 c+10$ then divide by 2			B0
	Her method is wrong			B0
	$3 c+5$ alone			B0

Q	Answer	Mark	Comments
14	Alternative method 1		
	$60 \times(1-0.15)$ or 60×0.85 or 51 or $40 \times(1-0.1)$ or 40×0.9 or 36	M1	oe $60 \times 0.15 \text { or } 9$ or $40 \times 0.1 \text { or } 4$
	$2 \times$ their $51+2 \times$ their 36 or 174	M1dep	oe $2 \times$ their $9+2 \times$ their 4 or 26 their 51 , their 36 , their 9 and their 4 must come from a correct method
	$(2 \times 60+2 \times 40) \times 0.75$ or 200×0.75 or 150 or $(2 \times 60+2 \times 40) \times 0.25$ $\text { or } 200 \times 0.25 \text { or } 50$	M1	oe
	174 and 150 and No or 224 and 200 and No or 26 and 50 and No	A1	SC3 176 and 150 and No or 226 and 200 and No or 24 and 50 and No

Mark scheme and Additional Guidance continue on the next page

Q	Answer	Mark	Comments	
	Alternative method 2			
	$60 \times(1-0.15) \text { or } 60 \times 0.85 \text { or } 51$ or $40 \times(1-0.1)$ or 40×0.9 or 36	M1	oe $60 \times 0.15 \text { or } 9$ or $40 \times 0.1 \text { or } 4$	
	$2 \times$ their $51+2 \times$ their 36 or 174	M1dep	oe $2 \times$ their $9+2 \times$ their 4 or 26 their 51 , their 36 , their 9 and their 4 must come from a correct method	
14cont	$\begin{aligned} & \frac{(2 \times 60+2 \times 40)-\text { their } 174}{2 \times 60+2 \times 40} \times 100 \\ & \text { or } \frac{200-\text { their } 174}{200} \times 100 \\ & \text { or } 13(\%) \\ & \text { or } \frac{174}{200} \times 100 \text { and } 100-25 \\ & \text { or } 87(\%) \text { and } 75(\%) \end{aligned}$	M1dep	oe$\begin{aligned} & \frac{2 \times \text { their } 9+2 \times \text { their } 4}{200} \times 100 \\ & \text { or } \frac{26}{200} \times 100 \text { or } 13(\%) \\ & \text { or } \\ & \frac{200-(2 \times \text { their } 9+2 \times \text { their } 4)}{200} \times 100 \\ & \text { and } 100(\%)-25(\%) \\ & \text { or } 87(\%) \text { and } 75(\%) \end{aligned}$	
	13% and No or 87% and 75% and No	A1	oe SC3 12\% and No or 88% and	d No
	Additional Guidance			
	Ignore incorrect statements or calculations with full mark response			
	Consistently working with half of a perimeter can score up to 4 marks			
	SC3 must come from transposing length and width values			
	Accept length and width values transposed for up to 3 marks eg 60×0.9 with 40×0.85 and $2 \times 54+2 \times 34$ eg 60×0.9 with 40×0.9 and $2 \times 54+2 \times 36$ (not transposed) eg 60×0.1 or 40×0.15 or 6			M1M1 M1M0 M1

Q	Answer	Mark	Comments	
15	Alternative method 1			
	$\frac{x}{3}>11-4$ or $\frac{x}{3}>7$ or $4-11>-\frac{x}{3}$ or $-7>-\frac{x}{3}$ or $-21>-x$	M1	oe term in x isolated	
	$x>21$ or $21<x$	A1	SC1 $x=21$ or $x<21$ or $21>x$	
	Alternative method 2			
	$12>33-x$ or $x>33-12$ or $-12<-33+x$	M1	oe fractions eliminated eg $12-33>-x$	
	$x>21$ or $21<x$	A1	SC1 $x=21$ or $x<21$ or $21>x$	
	Additional Guidance			
	Do not allow use of '=' for M1 unless recovered for final answer			
	$12>11-x$			MOAO
	21 on answer line with no working			MOAO

Q	Answer	Mark	Comments	
16	2×6 or 12 and $7 \times 11 \text { or } 77$ and 12×3 or 36 or 125	M1	may be seen in table at least two correct products or their values	
	$\underline{\text { their } 12+\text { their } 77+\text { their } 36}$ 20 or $\frac{125}{20}$ or $125 \div 20$ or $6 \frac{1}{4}$	M1dep	oe condone bracket error if working seen eg condone $12+77+36 \div 20$	
	6.25	A1		
	Additional Guidance			
	6.25 in working, 6 on answer lin			M1M1A0
	$125 \div 3$			M1M0A0
	Correct product(s) seen in the table but a different method not using their product(s) used for the mean is choice eg 125 in table but mean calculated as $20 \div 3=6.7$			MOMOAO

Q	Answer	Mark	Comments	
17	$2(12-x) \text { or } 24-2 x$ or $12(x+2) \text { or } 12 x+24$ or $12 x+2 x \text { or } 14 x$ or $2 x+x^{2}+x(12-x)$ or $2 x+x^{2}+12 x-x^{2}$	M1	oe correct area of small rectangle or large rectangle or unshaded section may be seen on diagram	
	$\frac{12(x+2)}{4}=2(12-x)$ or $12 x+2 x=6(12-x)$	M1dep	oe equation$\begin{aligned} & \text { eg } 3(x+2)=2(12-x) \\ & 3 x+6=24-2 x \\ & 12(x+2)=8(12-x) \\ & 12 x+24=96-8 x \end{aligned}$	
	$3 x+2 x=24-6$ or $14 x+6 x=72$	M1dep	oe equation with brack terms collected $\begin{aligned} & \text { eg } 5 x=18 \\ & 12 x+8 x=96-24 \\ & 20 x=72 \end{aligned}$	expanded and
	$\frac{18}{5}$ or $3 \frac{3}{5}$ or 3.6	A1	oe	
	Additional Guidance			
	$3 x+6$			M1
	Trial and improvement with $x=3.6$ chosen			M1M1M1A1
	Trial and improvement without $x=3.6$ chosen			MOMOMOAO

Q	Answer	Mark	Comments
18	Alternative method 1		
	30×0.45 or 13.5	M1	
	their $13.5 \div 2.54^{2}$	M1dep	oe eg $\frac{30 \times 0.45}{2.54^{2}}$
	2.09(2...) or 2.093 or 2.1	A1	SC1 5.31(4...) or 5.315 or 5.3
	Alternative method 2		
	$30 \div 2.54^{2}$ or $4.65(0 \ldots)$	M1	Oe
	their $4.65(0 \ldots) \times 0.45$	M1dep	oe eg $\frac{30}{2.54^{2}} \times 0.45$
	$2.09(2 \ldots)$ or 2.093 or 2.1	A1	SC1 5.31(4...) or 5.315 or 5.3
	Alternative method 3		
	$\begin{aligned} & 0.45 \div 2.54^{2} \\ & \text { or } 0.0697(5 \ldots) \text { or } 0.0698 \end{aligned}$	M1	oe
	their $0.0697(5 \ldots) \times 30$	M1dep	$\text { oe eg } \frac{0.45}{2.54^{2}} \times 30$
	$2.09(2 \ldots)$ or 2.093 or 2.1	A1	SC1 5.31(4...) or 5.315 or 5.3
		ditional	uidance
	SC1 when 2.54 is used and		

\mathbf{Q}	Answer	Mark	Comments
$\mathbf{1 9}$	$x<1$ and $y>-3$	B1	

Q	Answer	Mark	Comments	
20(a)	Fully correct box plot	B2	B1 three correctly positioned measures	
	Additional Guidance			
		17		B2
	Does not need to be ruta	tion $\pm 1 /$	quare	
	Whiskers must stop at			
	Whiskers must reach 1			

Q	Answer ${ }^{\text {a }}$ Mark		Comments	
20(b)	(Ben IQR =) 3 and (Amari IQR =) 6 and Ben	B2	B1 (Ben IQR =) 3 or (Amari IQR =) 6 or Ben and his box is or Ben and his IQR is	
	Additional Guidance			
	Ben's IQR is 3 smaller than Amari's			B2
	Statement based only on incorrect IQR values			B0
	Ben			B0
	Only using range			B0

Q	Answer	Mark	Comme	
21(a)	$\begin{aligned} & \text { Angle } A B P=71 \\ & \text { or } \\ & 180-2 \times 71 \\ & \text { or } \\ & 180-142 \\ & \text { or } \\ & (180-90-71) \times 2 \end{aligned}$	M1	oe may be marked on diagram in correct position	
	38	A1		
	Additional Guidance			
	71 or 38 in working with either angle correctly identified, 180 on answer line			M1A0
	71 or 38 in working with neither angle correctly identified, 180 on answer line			MOAO

Q	Answer	Mark	Comments
21(b)	Alternative method 1		
	(Angle CXD $=$) 360-204 or 156	M1	may be marked on diagram in correct position
	$156 \div 2=78$ and $Y e s$ or $78 \times 2=156$ and Yes	A1	
	Alternative method 2		
	(Angle $C X D=$) $78 \times 2=156$	M1	may be marked on diagram in correct position
	$204+156=360$ and Yes or $360-156=204$ and Yes	A1	
	Additional Guidance		
	Angle CXD should be double angle		MOAO

Q	Answer	Mark	Comments
23	$(\overrightarrow{\mathrm{JN}}=) \frac{3}{2} \times 4 \mathrm{~b}$ or $6 \mathbf{b}$	M1	oe eg $(\overrightarrow{N J}=)-6 \mathbf{b}$ implied by $\overrightarrow{\mathrm{JL}}=10 \mathrm{~b}$ may be seen on diagram
	$(\overrightarrow{J K}=)$ their $6 \mathbf{b}+4 \mathbf{b}-7 \mathbf{a}$ or $10 \mathbf{b}-7 \mathbf{a}$	M1dep	oe eg ($\overrightarrow{\mathrm{KJ}}=) 7 \mathbf{7 a}-10 \mathbf{b}$
	$5 \mathbf{b}-\frac{7}{2} \mathbf{a}$ or $5 \mathbf{b}-3.5 \mathbf{a}$	A1	$\begin{aligned} & \text { oe eg } \frac{1}{2}(10 \mathbf{b}-7 \mathbf{a}) \\ & \text { SC2 } 3.5 \mathbf{a}-5 \mathbf{b} \text { or } \frac{7}{2} \mathbf{a}-5 \mathbf{b} \end{aligned}$
	Additional Guidance		

Q	Answer	Mark	Comments
24(b)	It is negative	B1	

Q	Answer	Mark	Comments
$\mathbf{2 5}$	6	B1	

Q	Answer	Mark	Comments
26	Alternative method 1 Working with 3.47.....		
	$10 x=34.7 \ldots$ or $100 x=347.7$.	M1	oe multiplication by a power of 10 eg $1000 x=3477.7 \ldots$ any letter
	$\begin{aligned} & 10 x-x=34.7 \ldots-3.47 \ldots \\ & \text { or } 9 x=31.3 \text { with } 10 x=34.7 \ldots \text { seen } \\ & \text { or } \\ & 100 x-10 x=347.7 \ldots-34.7 \ldots \\ & \text { or } 90 x=313 \text { with } 100 x=347.7 \ldots \\ & \text { and } 10 x=34.7 \ldots \text { seen } \\ & \text { or } \\ & 100 x-x=347.7 \ldots-3.47 \ldots \\ & \text { or } 99 x=344.3 \text { with } \\ & 100 x=347.7 \ldots \text { seen } \end{aligned}$	M1dep	oe subtraction to eliminate recurring digits eg 1000x-10x = 3477.7...-34.7... or $990 x=3443$ with $1000 x=3477.7 \ldots$ and $10 x=34.7 \ldots$ seen numbers must all be correct
	$x=3.47 \ldots$ stated and M2 scored and $9 x=31.3$ and $(x=) \frac{31.3}{9}$ and $\frac{313}{90}$ or $x=3.47 \ldots$ stated and M2 scored and $90 x=313$ and $(x=) \frac{313}{90}$ or $x=3.47 \ldots$ stated and M2 scored and $99 x=344.3$ and $(x=) \frac{344.3}{99}$ and $\frac{313}{90}$	A1	oe eg $x=3.47 \ldots$ stated and M2 scored and $990 x=3443$ and $(x=) \frac{3443}{990}$ and $\frac{313}{90}$

Mark scheme continues on the next three pages

Q	Answer	Mark	Comments
$\begin{gathered} 26 \\ \text { cont } \end{gathered}$	Alternative method 2 Working with 0.47.....		
	$10 x=4.7 \ldots$ or $100 x=47.7 \ldots$	M1	oe multiplication by a power of 10 eg $1000 x=477.7 \ldots$ any letter
	$10 x-x=4.7 \ldots-0.47 \ldots$ or $9 x=4.3$ with $10 x=4.7 \ldots$ seen or $100 x-10 x=47.7 \ldots-4.7 \ldots$ or $90 x=43$ with $100 x=47.7 \ldots$ and $10 x=4.7 \ldots$ seen or $100 x-x=47.7 \ldots-0.47 \ldots$ or $99 x=47.3$ with $100 x=47.7 \ldots$ seen	M1dep	oe subtraction to eliminate recurring digits eg $1000 x-10 x=477.7 \ldots-4.7 \ldots$ or $990 x=473$ with $1000 x=477.7 \ldots$ and $10 x=4.7 \ldots$ seen numbers must all be correct
	$x=0.47 \ldots$ stated and M2 scored and $9 x=4.3$ and $(x=) \frac{4.3}{9}$ and $3 \frac{4.3}{9}$ and $\frac{313}{90}$ or $x=0.47 \ldots$ stated and M2 scored and $90 x=43$ and $(x=) \frac{43}{90}$ and $3 \frac{43}{90}$ and $\frac{313}{90}$ or $x=0.47 \ldots$ stated and M2 scored and $99 x=47.3$ and $(x=) \frac{47.3}{99}$ and $3 \frac{47.3}{99}$ and $\frac{313}{90}$	A1	oe eg $x=0.47 \ldots$ stated and M2 scored and $990 x=473$ and $(x=) \frac{473}{990}$ and $3 \frac{473}{990}$ and $\frac{313}{90}$

Mark scheme continues on the next page

Q	Answer	Mark	Comments
$\begin{gathered} 26 \\ \text { cont } \end{gathered}$	Alternative method 3 Working with 0.07.....		
	$10 x=0.7 \ldots$ or $100 x=7.7$...	M1	oe multiplication by a power of 10 eg 1000 $x=77.7 . .$. any letter
	$10 x-x=0.7 \ldots-0.07 \ldots$ or $9 x=0.7$ with $10 x=0.7 \ldots$ seen or $100 x-10 x=7.7 \ldots-0.7 \ldots$ or $90 x=7$ with $100 x=7.7 \ldots$ and $10 x=0.7 \ldots$ seen or $100 x-x=7.7 \ldots-0.07 \ldots$ or $99 x=7.7$ with $100 x=7.7 \ldots$ seen	M1dep	oe subtraction to eliminate recurring digits eg 1000x-10x $=77.7 \ldots-0.7 \ldots$ or $990 x=77$ with $1000 x=77.7 \ldots$ and $10 x=0.7 \ldots$ seen numbers must all be correct
	$x=0.07 \ldots$ stated and M2 scored and $9 x=0.7$ and $(x=) \frac{0.7}{9}$ and $3.4+\frac{0.7}{9}$ and $\frac{313}{90}$ or $x=0.07 \ldots$ stated and M2 scored and $90 x=7$ and $(x=) \frac{7}{90}$ and $3.4+\frac{7}{90}$ and $\frac{313}{90}$ or $x=0.07 \ldots$ stated and M2 scored and $99 x=7.7$ and $(x=) \frac{7.7}{99}$ and $3.4+\frac{7.7}{99}$ and $\frac{313}{90}$	A1	oe eg $x=0.07 \ldots$ stated and M2 scored and $990 x=77$ and $(x=) \frac{77}{990}$ and $3.4+\frac{77}{990}$ and $\frac{313}{90}$

Additional guidance continues on the next page

Q	Answer	Mark	Comments	
$\begin{gathered} 26 \\ \text { cont } \end{gathered}$	Additional Guidance			
	$313 \div 90=3.47 \ldots$			MOMOAO
	Alt 1 M1dep oe subtraction to eliminate recurring $100 x-10 x=313$ with $100 x=34$ or $90 x=347.7 \ldots-34.7 \ldots$ with (apply same principle in Alt 2 and	ecimal and $=347.7$ 3)	... seen	
	Alt 2 equivalents for final part of eg For $3 \frac{43}{90}$ and $\frac{313}{90}$ allow $3+\frac{43}{90}$ and $\frac{313}{90}$			
	Alt 3 equivalents for final part of eg For $3.4+\frac{7}{90}$ and $\frac{313}{90}$ allow $3+\frac{4}{10}+\frac{7}{90}$ and $\frac{313}{90}$			

Q	Answer	Mark	Comments
$\mathbf{2 7}$	$(1,-6)$		B1

Q	Answer	Mark	Comments
29	$\begin{aligned} & 0.5 \times 8 \times 10 \times \sin 114 \\ & \text { or }[36.5,36.542] \end{aligned}$	M1	oe
	$\begin{aligned} & 8^{2}+10^{2}-2 \times 8 \times 10 \times \cos 114 \\ & \text { or [229, 229.1] } \end{aligned}$	M1	oe eg $164-160 \times \cos 114$
	$\begin{aligned} & \sqrt{8^{2}+10^{2}-2 \times 8 \times 10 \times \cos 114} \\ & \text { or }[15.1,15.14] \\ & \text { or }[7.55,7.57] \end{aligned}$	M1dep	oe dep on 2nd M1
	$\begin{aligned} & 0.5 \times \pi \times(0.5 \times \text { their }[15.1,15.14])^{2} \\ & \text { or } \\ & 0.5 \times \pi \times \text { their }[7.55,7.57]^{2} \\ & \text { or }[89.49,90.03] \end{aligned}$	M1dep	dep on 2nd and 3rd M1
	[125.99, 126.572]	A1	
	Additional Guidance		
	Diameter must come from using the cosine rule		
	2nd mark is not dependent on the first		

Q	Answer	Mark	Comments	
30	$2 x$	M1	oe	
	$\frac{1}{2} x-\left(\frac{1}{2} x\right)^{2}$ or $\frac{1}{2} x-\frac{1}{4} x^{2}$	M1	oe $\frac{1}{4} x^{2}+\frac{3}{2} x=0$ oe equation implies M2	
	$x\left(\frac{1}{4} x+\frac{3}{2}\right)=0$ or $x(x+6)=0$	M1dep	dep on M2 oe method for correct quadratic equation eg $\frac{-6 \pm \sqrt{6^{2}-4 \times 1 \times 0}}{2 \times 1}$	
	$x=0$ and $x=-6$	A1		
	Additional Guidance			
	$\frac{1}{2} x-\frac{1}{4} x^{2}=2 x$			M2
	$2 x-x^{2}=8 x$			M2
	$x^{2}+6 x=0$			M2

[^0]: Copyright information
 AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

