GCSE
 MATHEMATICS
 8300/3H

Higher Tier Paper 3 Calculator
Mark scheme
November 2018
Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

M Method marks are awarded for a correct method which could lead to a correct answer.

A Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.

B Marks awarded independent of method.
ft

SC Special case. Marks awarded for a common misinterpretation which has some mathematical worth.

M dep \quad A method mark dependent on a previous method mark being awarded.

B dep A mark that can only be awarded if a previous independent mark has been awarded.
oe
Or equivalent. Accept answers that are equivalent.
eg accept 0.5 as well as $\frac{1}{2}$
[a, b] Accept values between a and b inclusive.
[a, b) \quad Accept values $\mathrm{a} \leq$ value $<\mathrm{b}$
3.14... Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416

Use of brackets It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.
Questions which do not ask students to show working
As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the student intended it to be a decimal point.

Question	Answer	Mark	Comments

$\mathbf{1}$	up		B1	
	Additional Guidance			

2	$\frac{5}{2}$	B1		
	Additional Guidance			

| 3 | $8 n-5$ | B 1 | |
| :--- | :--- | :---: | :---: | :---: |
| | Additional Guidance | | |
| | | | |

| $\mathbf{4}$ | 120 | B1 | |
| :--- | :--- | :--- | :--- | :--- |
| | Additional Guidance | | |
| | | | |

5	109.5 in the correct position	B1	oe	
	110.5 in the correct position		oe	
		B1	Allow 110.49 answers rever	
	Additional Guidance			
	110.4999...			B1
	110.4999			B0

Question	Answer	Mark	Comments

$\mathbf{6}$ 6(a)	Plots at least 3 points correctly	M1	Plots within the correct 2 mm vertical square
	Fully correct with all points joined	A1	
	Additional Guidance		

6(b)	[4200, 4500] B2	B1 Any indication the 2018 figure is being increased for 2019 eg a point plotted for 2019 that is greater than 3780	
	Additional Guidance		
	Answer in range with or without working		B2
	4300 - 4350 on answer line (both values in range)		B2
	4400 - 4600 on answer line (one value in range)		B1
	Answer outside of range but between 3780 and 4200		B1
	Answer outside of range but greater than 4500		B1

Question	Answer	Mark	Comments

7	Any correct value	M1	11, 23, 37, 53, 71, 91, 113, 137, 163	
	Selects 91 as the only incorrect value with no errors in values given	A1	oe eg stops at 91	
	91 and 13 (is a factor) or 91 and 7 (is a factor) or 91 and 13×7	A1	oe$\text { eg } 91 \div 7=13$	
	Additional Guidance			
	Ignore incorrect evaluations for first mark			
	Ignore all values for n greater than 9			
	Do not allow 11 within a list of prime numbers eg 2, 3, 5, 7, 11...			
	Error in list eg 12, 23, 37, 53, 71, 91, 113, 137, 163 with 12 and 91 selected as not prime (not valid as incorrect)			M1A0A0
	Error in list eg 12, 23, 37, 53, 71, 91, 113, 137, 163 with only 91 selected as not prime (not valid as incorrect conclusion from their list)			M1A0A0
	$9^{2}+9+1=91$ is incorrect working			MOAOAO

Question	Answer	Mark	Comments

Question	Answer	Mark	Comments

	$0.9 \times \pi \div 2$ or $0.9 \pi \div 2$ or 0.45π or $0.9 \times[3.14,3.142] \div 2$ or [2.82, 2.83] $\div 2$ or $2.8 \div 2$ or 1.4...	M1	Large semicircle	
	$\begin{aligned} & 0.9 \div 3 \times \pi \div 2 \text { or } 0.3 \pi \div 2 \\ & \text { or } 0.15 \pi \\ & \text { or } 0.9 \div 3 \times[3.14,3.142] \div 2 \\ & \text { or } 0.94 \ldots \div 2 \\ & \text { or } 0.47 \ldots \end{aligned}$	M1	Small semicircle May be implied from using 1.4... for three small semicircles in next mark	
9	their 1.4... $\begin{aligned} & +3 \times \text { their } 0.47 \ldots \\ & +2 \times 0.75 \end{aligned}$ or $0.9 \pi+2 \times 0.75$ or $2 \times$ their $1.4 \ldots+2 \times 0.75$ or 4.3...	M1dep	oe dep on both marks	
	$305 \div \text { their 4.3... }$ or $[70.4,70.94]$	M1dep	dep on previous mark	
	71 with working	A1		
	Additional Guidance			
	0.9π or $2.8 \ldots$ with no evidence of incorrect method			M1M1
	$0.45 \pi \div 2$			M0

Question	Answer	Mark	Comments

Question	Answer	Mark	Comments

11	$\cos x=\frac{9}{10}$	M1	oe eg $\begin{aligned} & \sin x=\frac{\sqrt{10^{2}-9^{2}}}{10} \\ & \tan x=\frac{\sqrt{10^{2}-9^{2}}}{9} \end{aligned}$	
	25.8... or 26	A1		
	Additional Guidance			
	$\cos =\frac{9}{10} \quad x=25.8($ recovered $)$			M1A1
	$\cos =\frac{9}{10}$			MOAO

12	Graph should be a curve	B1	oe eg Should not be straight lines Not a curve Not smooth Too straight Need more points plotted
	Additional Guidance		

13	200	B1		
	Additional Guidance			

Question	Answer	Mark	Comments
14	19×82 or 1558	M1	
	$\frac{\text { their } 1558+93}{20}$ or $\frac{1651}{20}$	M1dep	oe
	82.55 or 82.6	A1	
	Additional Guidance		

Question	Answer	Mark	Comments

16	Alternative method 1		
	0.38×50 or 19	M1	oe
	0.6×80 or 48	M1	oe
	$\begin{aligned} & \frac{\text { their } 19+\text { their } 48}{50+80} \\ & \text { or } \frac{67}{130} \end{aligned}$	M1dep	oe
	$0.51(5 \ldots)$ or 0.52 or $\frac{67}{130}$ and $(67 \times 2=) 134$ or $\frac{67}{130}$ and $(130 \div 2=) 65$	A1	oe
	Alternative method 2		
	0.38×50 or 19	M1	oe
	0.6×80 or 48	M1	oe
	$0.5 \times(50+80)$ or 65	M1dep	oe
	65 and 67	A1	
	Alternative method 3		
	0.38×50 or 19	M1	oe
	$0.5 \times(50+80)$ or 65	M1	oe
	$\begin{aligned} & \frac{\text { their } 65-\text { their } 19}{80} \\ & \text { or } \frac{46}{80} \end{aligned}$	M1dep	oe
	0.575	A1	

Continues on next page

Question	Answer	Mark	Comments

16 cont	Alternative method 4		
	0.6×80 or 48	M1	oe
	$0.5 \times(50+80)$ or 65	M1	oe
	$\frac{\text { their } 65-\text { their } 48}{50} \text { or } \frac{17}{50}$	M1dep	oe
	0.34	A1	
	Alternative method 5		
	$\frac{50}{130} \times 0.38$ or $0.14 \ldots$ or 0.15	M1	oe
	$\frac{80}{130} \times 0.6$ or $0.36 \ldots$ or 0.37	M1	oe
	their 0.14... + their 0.36...	M1dep	oe
	$0.51(5 \ldots)$ or 0.52	A1	
	Additional Guidance		

17	$\frac{9}{25 x}$	B1		
	Additional Guidance			

Question	Answer	Mark	Comments

Question	Answer	Mark	Comments
19	30.25 or 29.75 or 5.85 or 5.75	B1	
	their 30.25 - their 5.75	M1	Must be their max roll - their min cut their max must be $(30,30.5$] their min must be $[5.5,5.8$)
	24.5	A1	
	Additional Guidance		
	$30.5-5.75=24.75$		B1M1A0

Alternative method 1

$2(-x-1)^{2}-5$	M1	oe Replacing x with $-x$
$2\left(x^{2}+x+x+1\right)-5$ or $2 x^{2}+4 x+2-5$ or $2 x^{2}+4 x-3$	M1dep	oe expansion
$y=2 x^{2}+4 x-3$	A1	

Alternative method 2

20

$2\left(x^{2}-x-x+1\right)-5$ or $2 x^{2}-4 x+2-5$ or $2 x^{2}-4 x-3$	M1	oe expansion Multiplying out original expression		
$2(-x)^{2}-4(-x)-3$ or $2 x^{2}+4 x-3$	M1dep	oe Replacing x with $-x$		
$y=2 x^{2}+4 x-3$	A1			
Additional Guidance				
Using symmetry in y axis, $y=2(x+1)^{2}-5 \rightarrow y=2 x^{2}+4 x-3$				M1M1A1

Question	Answer	Mark	Comments

22(b)	-0.20081	B1	
	Additional Guidance		
	Answer must be to exactly 5 decimal places	B0	
	-0.20083		

23	Alternative method 1		
	$48 \div 2 \times 3$ or 72	M1	oe
	their $72 \div 2$ or 36	M1dep	$\cos ^{-1}\left(\frac{36}{141}\right) \text { or } 75.2$
	141^{2} - their 36^{2} or 18585	M1dep	$\begin{aligned} & \text { ft their base } \div 2 \\ & \sin (\text { their } 75.2)=\frac{h}{141} \\ & \text { or } \tan (\text { their } 75.2)=\frac{h}{\text { their } 36} \end{aligned}$
	$\sqrt{141^{2}-\text { their } 36^{2}}$ or $\sqrt{18585}$	M1dep	$141 \times \sin$ (their 75.2) or their $36 \times \tan$ (their 75.2)
	[136.2, 136.4] or 136	A1	

Continues on next page

Question	Answer	Mark	Comments

23 cont	Alternative method 2		
	$141 \div 3$ or 47	M1	oe
	24 and their 47×2 or 24 and 94 or 12 and their 47	M1dep	$\cos ^{-1}\left(\frac{24}{94}\right) \text { or } 75.2$
	their $94^{2}-24^{2}$ or 8260 or $\sqrt{8260}$ or $90.88 \ldots$ or their $47^{2}-12^{2}$ or 2065 or $\sqrt{2065}$ or 45.44...	M1dep	$\begin{aligned} & \sin (\text { their } 75.2)=\frac{h}{\text { their } 94} \\ & \text { or } \tan (\text { their } 75.2)=\frac{h}{24} \end{aligned}$
	$\begin{aligned} & \sqrt{\text { their } 94^{2}-24^{2}} \times 3 \div 2 \\ & \text { or } \sqrt{8260} \times 3 \div 2 \\ & \text { or } 90.88 \ldots \times 3 \div 2 \\ & \text { or } \sqrt{\text { their } 47^{2}-12^{2}} \times 3 \\ & \text { or } \sqrt{2065} \times 3 \\ & \text { or } 45.44 \ldots \times 3 \end{aligned}$	M1dep	their $94 \times \sin ($ their 75.2$) \times 3 \div 2$ or $24 \times \tan ($ their 75.2$) \times 3 \div 2$
	[136.2, 136.35] or 136	A1	
		ditional	uidance
	Values may be seen on diag	rrect po	ions

Question	Answer	Mark	Comments

Question	Answer	Mark	Comments

| $\mathbf{2 5}$ | B and C | B1 | |
| :--- | :--- | :---: | :--- | :--- |
| | Additional Guidance | | |
| | | | |

26	$y(x-4)=2 x+3$	M1	$x(y-4)=2 y+3$
	$y x-4 y=2 x+3$	M1dep	$x y-4 x=2 y+3$
	$\begin{aligned} & y x-2 x=4 y+3 \\ & \text { or } x(y-2)=4 y+3 \\ & \text { or } x=\frac{4 y+3}{y-2} \end{aligned}$	M1dep	$\begin{aligned} & x y-2 y=4 x+3 \\ & \text { or } y(x-2)=4 x+3 \end{aligned}$
	$\frac{4 x+3}{x-2}$	A1	oe Must be in terms of x
	Additional Guidance		
	Ignore any attempt to give the domain of f^{-1}		

Question	Answer	Mark	Comments

27(b)	$\begin{aligned} & 7=3 \times 2+p \text { or } 7=6+p \\ & \text { or } p=1 \end{aligned}$	M1	oe Substitutes $x=2$ into given equation $10(2)^{2}+6 p(2)+p^{2}-53=0$ or $p^{2}+12 p-13=0$ or $(p-1)(p+13)$ or $p=1$ (and $p=-13$)	
	$10 x^{2}+6 x+1-53(=0)$ or $10 x^{2}+6 x-52(=0)$ or $5 x^{2}+3 x-26(=0)$	M1dep	oe equation Substitutes their p into given equation	
	$\begin{aligned} & (5 x+13)(x-2) \\ & \text { or } \frac{-3 \pm \sqrt{3^{2}-4 \times 5 \times-26}}{2 \times 5} \\ & \text { or }-\frac{3}{10} \pm \sqrt{\frac{529}{100}} \end{aligned}$	M1	oe Correct factorisation of their 3-term quadratic or correct substitution in formula for their 3 -term quadratic or correct completion of square to expression for x	
	$(x=)-2.6$	A1	oe	
	$(-2.6,-6.8)$	A1	oe	
	Additional Guidance			
	After scoring first M1, they substitute $p=-13$ $\begin{aligned} & (p-1)(p+13) \\ & \text { or } p=1 \text { (and } p=-13) \end{aligned}$ $10 x^{2}-78 x+169-53=0$ or $10 x^{2}-78 x+116=0$ or $5 x^{2}-39 x+58=0$ $(5 x-29)(x-2)$ or $\frac{-39 \pm \sqrt{(-39)^{2}-4 \times 5 \times 58}}{2 \times 5}$ or $\frac{39}{10} \pm \sqrt{\frac{361}{100}}$			M1 M1dep M1dep AO A0

Question	Answer	Mark	Comments

28	gradient is negative	B1		
	Additional Guidance			

