GCSE
MATHEMATICS
8300/2H
Higher Tier Paper 2 Calculator
Mark scheme
June 2020
Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Copyright information

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2020 AQA and its licensors. All rights reserved.

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

M Method marks are awarded for a correct method which could lead to a correct answer.

A Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.

B Marks awarded independent of method.
ft

SC Special case. Marks awarded for a common misinterpretation which has some mathematical worth.

M dep \quad A method mark dependent on a previous method mark being awarded.

B dep A mark that can only be awarded if a previous independent mark has been awarded.
oe \quad Or equivalent. Accept answers that are equivalent. eg accept 0.5 as well as $\frac{1}{2}$
[a, b] Accept values between a and b inclusive.
[a, b) \quad Accept values $a \leqslant$ value $<b$
3.14... Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416

Use of brackets It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles.

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the student intended it to be a decimal point.

Q	Answer	Mark	Comments		
$\mathbf{1} 1$	$x+4 x \equiv 5 x$		B1		
	Additional Guidance				

Q	Answer	Mark	Comments	
2×2	SAS	Additional Guidance		

Q	Answer	Mark	Comments	
3	5.2×10^{-4}		B1	
	Additional Guidance			

Q	Answer	Mark	Comments		
4	a^{2}		B1		
	Additional Guidance				

Q	Answer	Mark	Comments	
5(a)	Plots at least 3 points correctly	M1	$\pm \frac{1}{2}$ square	
	All four points correctly plotted and joined	A1	$\pm \frac{1}{2}$ square ignore working for part (b)	
	Additional Guidance			
	$\pm \frac{1}{2}$ square means half a small square horizontally and vertically			
	If a point is within tolerance the line must be within $\pm \frac{1}{2}$ square of their point			
	Mark intention for joining point to point			

Q	Answer	Mark	Comments
5(b)	$[70,78]$	B1	
	Additional Guidance Answer in range with or without working, with no graph or incorrectgraph		
	$70.5-75$ on answer line (both values in range)	B1	

Q	Answer	Mark	Comments	
7(b)	3.5	B1	oe	
	Additional Guidance			
	$x=3.5$			B1
	3.5x			B0
	Ignore any y-coordinat eg (3.5, -2.25) or 3.5	ckets o $y=$	ted or $x=3.5 \quad y=2$	B1
	(-2.25, 3.5)			B0

Q	Answer	Mark	Comments	
8	40 (women) and 44 (men) and No or 40:44 and No or 84 and No or 8 (women leave) and 2 (men arrive) and No	B2	oe B1 40 (women) and 44 (men) or $40: 44$ or 84 or 8 (women leave) and 2 (men arrive)	
	Additional Guidance			
	NB 84 from incorrect working eg 41	$43=8$		B0
	$\begin{aligned} & \text { For B1 the values may be seen amo } \\ & \text { eg1 } 20: 2230: 3340: 4450: 55 \\ & \text { eg2 } 21,42,63,84,105, \ldots \\ & \text { eg3 } 10,20,30,40,50, \ldots \text { and } 11, \\ & \text { eg4 } \frac{44}{84} \text { (implies } 84 \text {) } \end{aligned}$	other $\text { , 33, } 4$	$55, \ldots$	B1
	For B2 the value(s) must be chosen that point and No must be indicated	y eg cir	g or a list stopping at	

Q	Answer	Mark	Comments
9(a)	Alternative method 1		
	$200-2 \times 5 \times 5$ or $200-50$ or 150 or $4 \times 5 \times y$ or $20 y$	M1	oe eg $5 y+5 y+5 y+5 y$ implied by 37.5 or answer 937.5
	$4 \times 5 \times y=200-2 \times 5 \times 5$ or $4 \times 5 \times y=200-50$ or $4 \times 5 \times y=150$ or $150 \div 4 \div 5$ or $150 \div 20$ or 7.5	M1dep	oe eg $20 y=150$
	187.5	A1	oe
	Alternative method 2		
	$200-2 \times 5 \times 5$ or $200-50$ or 150	M1	oe implied by 37.5 or answer 937.5
	$150 \div 4 \times 5$ or 37.5×5	M1dep	oe
	187.5	A1	oe
	Additional Guidance		
	Embedded 7.5 eg $4 \times 5 \times 7.5=1$		M1M1

Q	Answer	Mark	Comments	
9(b)	It is smaller than the answer to part (a)	B1		
	Additional Guidance			

Q	Answer	Mark	Comments
10	Alternative method 1 Total \% for A after 6 tests - total \% for B after 5 tests		
	$\begin{aligned} & 60 \times 5 \text { or } 300 \\ & \text { or } \\ & 52 \times 5 \text { or } 260 \end{aligned}$	M1	oe
	$\frac{24}{50} \times 100 \text { or } 0.48 \times 100$ or 48	M1	oe 348 implies M1M1
	$\begin{aligned} & 60 \times 5+\frac{24}{50} \times 100-52 \times 5 \\ & \text { or } \\ & 300+48-260 \text { or } 88 \end{aligned}$	M1dep	oe eg 348-260 dep on M1M1
	44	A1	$\text { allow } \frac{44}{50}$
	Alternative method 2 Total score for A after 6 tests - total score for B after 5 tests	Total score for A after 6 tests - total score for B after 5 tests	
	$\frac{60}{100} \times 50$ or 30	M1	oe allow $\frac{30}{50}$ implied by 150 or 174
	$\frac{52}{100} \times 50$ or 26	M1	oe allow $\frac{26}{50}$ implied by 130
	$\frac{60}{100} \times 50 \times 5+24-\frac{52}{100} \times 50 \times 5$ or $150+24-130$	M1dep	oe eg 174-130 dep on M1M1
	44	A1	$\text { allow } \frac{44}{50}$

Mark scheme and Additional Guidance continues on the next two pages

Q	Answer	Mark	Comments
$\begin{gathered} 10 \\ \text { cont } \end{gathered}$	Alternative method 3 Total sco	Total score for A after 6 tests - total score for B after 5 tests	
	50×5 or 250	M1	oe implied by 150 or 130 or 174
	$\frac{60}{100} \times 50 \times 5 \text { or } 150$ and $\frac{52}{100} \times 50 \times 5 \text { or } 130$	M1dep	oe allow $\frac{150}{250}$ and $\frac{130}{250}$
	$\frac{60}{100} \times 50 \times 5+24-\frac{52}{100} \times 50 \times 5$ or $150+24-130$	M1dep	oe eg 174-130
	44	A1	$\text { allow } \frac{44}{50}$
	Alternative method 4 Difference in scores after 5 tests +6th score for A		
	$60-52$ or 8	M1	oe
	$\frac{60-52}{100} \times 50 \text { or } 4$	M1dep	$\begin{aligned} & \text { oe eg } \frac{60}{100} \times 50-\frac{52}{100} \times 50 \\ & \text { or } 30-26 \\ & \text { allow } \frac{4}{50} \end{aligned}$
	$\frac{60-52}{100} \times 50 \times 5+24$ or $4 \times 5+24$ or $20+24$	M1dep	oe
	44	A1	$\text { allow } \frac{44}{50}$

Additional Guidance is on the next page

$\begin{gathered} 10 \\ \text { cont } \end{gathered}$	Additional Guidance	
	To award the 3rd M a calculation or a value (not an equation) must be seen	
	Select the scheme that favours the student for the first 2 M marks even if not subsequently used	
	Alt 1 Do not award 1st M for 300 if incorrect method seen eg $6 \times 50=300$ does not score the 1 st M	
	Alt 1 Do not award 2nd M for 48 if incorrect method seen eg $100-52=48$ does not score the $2 n d M$	
	Alt 2 Do not award 2nd M for 26 if incorrect method seen eg 50-24 = 26 does not score the $2 n d M$	

Q	Answer	Mark		
11	$2625 \div 250$ or $2.625 \div 250$ or $2625 \div 0.00025$ or answer with digits 105	M1	$\text { oe eg } 2$	
	10.5	A1	oe	
	Additional Guidance			
	Digits 105 may have additional zeros before 1 or after 5 eg1 0.000105 eg2 10500 eg3 10.05			$\begin{aligned} & \text { M1A0 } \\ & \text { M1A0 } \\ & \text { M0A0 } \end{aligned}$

Q	Answer	Mark	Comments	
12	$\frac{9-3}{1--2} \text { or } \frac{6}{3}$ or $2 x(+c)$ where c is a constant	M1	oe eg $\frac{3-9}{-2-1}$ or $\frac{-6}{-3}$	
	2	A1		
	Additional Guidance			
	$2 x$ may be implied eg $y-3=2(x+2)$			M1A0

Q	Answer	Mark	Comments	
	$\frac{1}{2} \times(2.8+2.1)(\times h)$ or $2.45(h)$	M1	$\begin{aligned} & \text { oe eg } 2.1(h)+0.5(h) \times 0.7 \\ & \text { any letter } \\ & \text { may be implied } \end{aligned}$	
13	$\frac{1}{2} \times(2.8+2.1) \times h=39.2$ or $(2.8+2.1) \times h=39.2 \times 2$ or $39.2 \div 2.45$ or $78.4 \div 4.9$	M1dep	oe equation or calculation	
	16	A1	SC1 8	
	Additional Guidance			
	Different letter used eg 2.1 $h+0.5 x \times 0.7$ is M0 unless recovered			

Q	Answer	Mark	Comments
14	Alternative method 1		
	6500×1.05 or 6825	M1	oe eg $6500+0.05 \times 6500$ or $6500+325$ may be implied eg 7475
	$\begin{aligned} & 6500 \times 1.05^{3} \\ & \text { or } \\ & 7524 .(\ldots) \\ & \text { or } \\ & 7525 \end{aligned}$	M1dep	oe eg their 6825×1.05 or 7166.25 and their 7166.25×1.05 $6825 \times 1.05^{2} \text { is M2 }$
	7524.(...) and Yes or 7525 and Yes	A1	oe eg 7524.(...) which is more than 7500
	Alternative method 2		
	1.05^{3} or $1.157 \ldots$ or 1.158 or 1.16 or $\frac{7500}{6500}$ or $1.15(3 \ldots)$ or 1.154	M1	oe
	1.05^{3} or $1.157 \ldots$ or 1.158 or 1.16 and $\frac{7500}{6500}$ or $1.15(3 \ldots)$ or 1.154	M1dep	oe
	```1.157\ldots or 1.158 or 1.16 and 1.15(3...) or 1.154 and Yes```	A1	

## Additional Guidance is on the next page

$\begin{gathered} 14 \\ \text { cont } \end{gathered}$	Additional Guidance	
	Working is implied by a correct value 7524.(...) and Yes with no working 7525 and Yes with no working 7524.(...) with no working 7525 with no working	M1M1A1   M1M1A1   M1M1A0   M1M1A0
	$7525>7500$	M1M1A1
	$7525<7500$	M1M1A0
	For year on year working allow truncation/rounding $\begin{aligned} & \text { eg } 6825 \times 1.05=7166 \\ & 7166 \times 1.05=7524.30 \quad \text { Yes } \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { M1A1 } \end{gathered}$
	Increasing by 5\% four or more times can score a maximum of M1M1A0	
	Increasing by 5\% two times can score a maximum of M1M0A0	
	Do not allow misreads of 5\%	


Q	Answer	Mark	Comments	
	Alternative method 1			
	$a c=b+5 c$	M1	oe fraction eliminated	
15	$\begin{aligned} & a c-5 c=b \text { or } c(a-5)=b \\ & \text { or } \frac{b}{a-5} \end{aligned}$	M1dep	oe terms in $c$ collected	
	$c=\frac{b}{a-5}$	A1		
	Alternative method 2			
	$a-5=\frac{b}{c}$	M1		
	$\frac{1}{a-5}=\frac{c}{b}$ or $\frac{a-5}{b}=\frac{1}{c}$   or $c(a-5)=b$   or $\frac{b}{a-5}$	M1dep		
	$c=\frac{b}{a-5}$	A1		
	Additional Guidance			
	$c=\frac{b}{a-5}$ in working lines with $\frac{b}{a-5}$ on answer line			M1M1A1


Q	Answer	Mark	Comments	
16	$\frac{4}{11} \times 22$ or 8   or $\frac{40}{100} \times 5 \text { or } 2$   or $22 \times 7 \times 5$ or 770   or   $\frac{4}{11} \times \frac{40}{100}$ or $\frac{160}{1100}$ or $\frac{8}{55}$	M1	oe accept $\frac{8}{22}$ for 8 accept $\frac{2}{5}$ for 2	
	$\frac{4}{11} \times 22 \times 7 \times \frac{40}{100} \times 5$   or $8 \times 7 \times 2$	M1dep	oe eg $\frac{4}{11} \times \frac{2}{5} \times 770$   or $\frac{8}{55} \times 770$   or $\frac{8}{22} \times \frac{7}{7} \times \frac{2}{5}$ or $\frac{112}{770}$	
	112	A1	allow 112 out of 770	
	Additional Guidance			
	$\frac{112}{770}$			M1M1A0
	$\frac{8}{55}$ from $\frac{112}{770}$			M1M1A0
	$\frac{8}{55}$ from $\frac{4}{11} \times \frac{2}{5}(\times 1)$			M1M0A0
	Allow [0.36, 0.364] for $\frac{4}{11}$ eg $0.36 \times 22=7.92$ (allow 7 if method seen) $7.92 \times 7 \times 2$ (or $7 \times 7 \times 2$ )			$\begin{gathered} \text { M1 } \\ \text { M1A0 } \end{gathered}$


Q	Answer	Mark	Comments	
17(a)	$[82.5,83.5]$		B1	
	Additional Guidance			

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Answer \& Mark \& \multicolumn{2}{|l|}{Comments} \\
\hline \multirow{8}{*}{17(b)} \& 156 \& B1 \& \multicolumn{2}{|l|}{accept 155 or 157} \\
\hline \& \begin{tabular}{l}
their \(156 \times(0)\). \\
or 4992 or 49.92 \\
and
\[
(200-\text { their } 156) \times(0 .) 39
\] \\
or \(44 \times(0)\).39 or 1716 or 17.16
\end{tabular} \& M1 \& \multicolumn{2}{|l|}{\begin{tabular}{l}
\[
0<\text { their } 156<200
\] \\
but their 156 cannot be 90 6708 implies B1M1
\end{tabular}} \\
\hline \& 67.08 \& A1ft \& \multicolumn{2}{|l|}{ft their 156} \\
\hline \& \multicolumn{4}{|c|}{Additional Guidance} \\
\hline \& \multicolumn{3}{|l|}{\[
\begin{aligned}
\& 155 \\
\& 155 \times 0.32+45 \times 0.39 \\
\& =49.60+17.55 \\
\& =67.15
\end{aligned}
\]} \& \begin{tabular}{l}
B1 \\
M1 \\
A1
\end{tabular} \\
\hline \& \multicolumn{3}{|l|}{\[
\begin{aligned}
\& 157 \\
\& 157 \times 0.32+43 \times 0.39 \\
\& =50.24+16.77 \\
\& =67.01
\end{aligned}
\]} \& \begin{tabular}{l}
B1 \\
M1 \\
A1
\end{tabular} \\
\hline \& \multicolumn{3}{|l|}{\[
\begin{aligned}
\& 158 \\
\& 158 \times 0.32+42 \times 0.39 \\
\& =50.56+16.38 \\
\& =66.94
\end{aligned}
\]} \& \begin{tabular}{l}
B0 \\
M1 \\
A1ft
\end{tabular} \\
\hline \& \multicolumn{3}{|l|}{\[
\begin{aligned}
\& 90 \\
\& 90 \times 0.32+110 \times 0.39 \\
\& =28.80+42.90 \\
\& =71.70
\end{aligned}
\]} \& B0
M0

A0 <br>
\hline
\end{tabular}

Q	Answer	Mark	Comments	
	Alternative method 1			
	$\tan 62=\frac{h}{5}$	M1	$\begin{aligned} & \text { oe eg } \tan (90-62)=\frac{5}{h} \\ & \text { or } \frac{h}{\sin 62}=\frac{5}{\sin 28} \end{aligned}$   any letter	
	$5 \times \tan 62$ or $9.4(0 \ldots)$	M1dep	$\begin{aligned} & \text { oe eg } \frac{5}{\tan 28} \\ & \text { or } \frac{5}{\sin 28} \times \sin 62 \end{aligned}$	
18	$\sin x=\frac{\text { their } 9.4(0 \ldots)}{12}$   or $\sin x=[0.78,0.784]$	M1dep	oe eg $\sin x=\frac{5 \times \tan 62}{12}$ or $\cos x=\frac{\sqrt{12^{2}-\text { their } 9.4^{2}}}{12}$	
	[51.536, 51.63]	A1	accept 52 with M3 seen	
	Alternative method 2			
	$\left(\frac{5}{\cos 62}\right)^{2}-5^{2}$ or [88.4, 88.43]	M1	oe	
	$\sqrt{\left(\frac{5}{\cos 62}\right)^{2}-5^{2}}$ or 9.4(0...)	M1dep	oe	
	$\sin x=\frac{\text { their } 9.4(0 \ldots)}{12}$   or $\sin x=[0.78,0.784]$	M1dep	$\text { oe eg } \cos x=\frac{\sqrt{12^{2}-\text { their } 9.4^{2}}}{12}$	
	[51.536, 51.63]	A1	accept 52 with M3 seen	
	Additional Guidance			
	Answer in range with truncation to 51			M1M1M1A1



Q	Answer	Mark	Comment	
20	$180-\frac{360}{10} \text { or } 180-36$   or $1440 \div 10$   or $144$	M1	oe eg $(10-2) \times 180 \div 1$ may be seen on diagram	
	$\frac{540-3 \times \text { their } 144}{2}$   or $\frac{540-432}{2}$ or $\frac{108}{2}$   or   $360-90$ - their $144-\frac{\text { their } 144}{2}$ or   their 144-90	M1dep	$\text { oe eg } \frac{(5-2) \times 180-3 \times t}{2}$	$\text { r } 144$
	54			
	Additional Guidance			
	$540 \div 10=54$			MOMOAO
	144 worked out but not used			M1M0A0


Q	Answer	Mark	Comments	
21(a)	$(2.5,0.4)$		B1	
	Additional Guidance			


Q	Answer	Mark	Comments	
21(b)	Valid criticism	B1	eg the graph should go through (4, 16)	
	Additional Guidance			
	$(4,15)$ should be $(4,16)$			B1
	It should be (4, 16)			B1
	Graph should end at ( $y=$ ) 16			B1
	$(4,15)$ is not on the graph			B1
	The point at $x=4$ is wrong			B1
	The point at 4 is wrong			B0
	$2^{4}$ is 16			B1
	$4^{2}$ is 16			B0
	The last point is wrong			B1
	One of the points is wrong			B0
	Graph isn't high enough			B0


Q	Answer	Mark	Comments	
22	A	Additional Guidance		
		B1		



Q	Answer	Mark	Comments
24(a)	$(-5,-2)$	B2	B1 point (1, -4) from rotation may be seen on the diagram or point $(-5,-2)$ marked on diagram SC1 $(-7,6)$
	Additional Guidance		
	$(-5,-2)$ marked on dia	( -2 ,	B1


Q	Answer	Mark	Comments		
24(b)	$y=-x$		B1		
	Additional Guidance				


Q	Answer ${ }^{\text {a }}$ Mark		Comments	
25	$(3 x-4)(x+5)$	B2	oe product of brackets $\text { eg }(x+5)(3 x-4) \text { or }(3 x-4)(5+x)$   or $-(4-3 x)(x+5)$   B1 $(3 x+a)(x+b)$ where $a b=-20$   or $a+3 b=11$   or $3 x(x+5)-4(x+5)$   or $x(3 x-4)+5(3 x-4)$	
	Additional Guidance			
	Ignore attempts to solve $3 x^{2}+11 x-20=0$			
	$(3 x+4)(x-5)$			B1
	$(3 x+4)(x+5)$			B0
	$(3 x-1)(x+4)$			B1
	$(3 x+1)(x-4)$			B0
	Condone multiplication eg $(3 x-4) \times(x+5)$	brack	for B2	B2
	Condone multiplication eg $(3 x-1) \times(x+20)$	brack	for B1	B1
	Condone missing final $\begin{array}{ll} \text { eg1 } & (3 x-4)(x+5 \\ \text { eg2 }(3 x-20)(x+1 \end{array}$			
	Do not allow $x 3$ for $3 x$			



Q	Answer	Mark	Comments
	Alternative method 1		
	$\frac{4}{20} \times \frac{16}{19}$ or $\frac{64}{380}$ or $\frac{16}{95}$ or   $\frac{6}{20} \times \frac{10}{19}$ or $\frac{60}{380}$ or $\frac{3}{19}$   or $\frac{7}{20} \times \frac{3}{19} \text { or } \frac{21}{380}$	M1	oe fractions or decimals condone $\frac{4}{20} \times \frac{16}{20}$ etc
27	Any 2 of   $\frac{4}{20} \times \frac{16}{19}$ or $\frac{64}{380}$ or $\frac{16}{95}$   and   $\frac{6}{20} \times \frac{10}{19}$ or $\frac{60}{380}$ or $\frac{3}{19}$   and $\frac{7}{20} \times \frac{3}{19} \text { or } \frac{21}{380}$	M1dep	oe fractions or decimals
	$\frac{4}{20} \times \frac{16}{19}+\frac{6}{20} \times \frac{10}{19}+\frac{7}{20} \times \frac{3}{19}$   or $\frac{64}{380}+\frac{60}{380}+\frac{21}{380}$	M1dep	oe fractions or decimals eg $\frac{16}{95}+\frac{3}{19}+\frac{21}{380}$
	$\begin{aligned} & \frac{145}{380} \text { or } \frac{29}{76} \\ & \text { or }[0.381,0.382] \\ & \text { or }[38.1 \%, 38.2 \%] \end{aligned}$	A1	accept 0.38 or $38 \%$ with full working SC2 $\frac{145}{400}$ or $\frac{29}{80}$ or 0.3625 or $36.25 \%$


Q	Answer	Mark	Comments
$\begin{gathered} 27 \\ \text { cont } \end{gathered}$	Alternative method 2		
	$\frac{6}{20} \times \frac{4}{19}$ or $\frac{24}{380}$ or $\frac{6}{95}$   or   $\frac{7}{20} \times \frac{10}{19}$ or $\frac{70}{380}$ or $\frac{7}{38}$   or $\frac{3}{20} \times \frac{17}{19} \text { or } \frac{51}{380}$	M1	oe fractions or decimals condone $\frac{6}{20} \times \frac{4}{20}$ etc
	Any 2 of   $\frac{6}{20} \times \frac{4}{19}$ or $\frac{24}{380}$ or $\frac{6}{95}$   and   $\frac{7}{20} \times \frac{10}{19}$ or $\frac{70}{380}$ or $\frac{7}{38}$ and $\frac{3}{20} \times \frac{17}{19} \text { or } \frac{51}{380}$	M1dep	oe fractions or decimals
	$\frac{6}{20} \times \frac{4}{19}+\frac{7}{20} \times \frac{10}{19}+\frac{3}{20} \times \frac{17}{19}$   or $\frac{24}{380}+\frac{70}{380}+\frac{51}{380}$	M1dep	oe fractions or decimals eg $\frac{6}{95}+\frac{7}{38}+\frac{51}{380}$
	$\begin{aligned} & \frac{145}{380} \text { or } \frac{29}{76} \\ & \text { or }[0.381,0.382] \\ & \text { or }[38.1 \%, 38.2 \%] \end{aligned}$	A1	accept 0.38 or $38 \%$ with full working SC2 $\frac{145}{400}$ or $\frac{29}{80}$ or 0.3625 or $36.25 \%$

[^0]


## Mark scheme and Additional Guidance continues on the next page



Q	Answer	Mark	Comments
28	Alternative method 1		
	$0.5 \times 4 \times 10$ or 20	M1	oe   may be seen on graph
	$\frac{75-0.5 \times 4 \times 10}{10}$ or $\frac{55}{10}$ or 5.5	M1dep	oe may be embedded eg $5.5 \times 10=55$
	9.5	A1	oe
	Alternative method 2		
	Correct method or value for distance travelled in the first $t$ seconds where $t>4$	M1	eg distance for $12 \mathrm{~s}=100$ or distance for $9 \mathrm{~s}=0.5 \times(9+5) \times 10$ or 70 may be seen on graph
	$\frac{\text { their distance }-75}{10}$ or $\frac{75 \text { - their distance }}{10}$	M1dep	$\begin{aligned} & \text { eg } \frac{100-75}{10} \\ & \text { or } \frac{75-70}{10} \end{aligned}$
	9.5	A1	oe
	Additional Guidance		
	1st $M$ can be awarded even if not subsequently used		


Q	Answer	Mark	Comments
29	$5\left(x^{2}+3\right) \text { or } 5 x^{2}+15$   or $2 x(4 x+1) \text { or } 8 x^{2}+2 x$	M1	oe   ignore any denominators
	$5\left(x^{2}+3\right)=2 x(4 x+1)$   or $5 x^{2}+15=8 x^{2}+2 x$	M1dep	oe allow both sides to have denominator $(4 x+1)\left(x^{2}+3\right)$ oe
	$3 x^{2}+2 x-15(=0)$	M1dep	oe equation with terms collected eg $3 x^{2}+2 x=15$   no denominator allowed unless recovered in subsequent working
	$\begin{aligned} & \frac{-2 \pm \sqrt{2^{2}-4 \times 3 \times-15}}{2 \times 3} \\ & \text { or } \frac{-2 \pm \sqrt{184}}{6} \\ & \text { or }-\frac{1}{3} \pm \frac{1}{3} \sqrt{46} \end{aligned}$   or 1.927... and -2.594... and $3 x^{2}+2 x-15(=0)$ seen	M1	oe   ft their 3-term quadratic   allow correct factorisation of their 3-term quadratic
	1.93 and -2.59 and $3 x^{2}+2 x-15(=0)$ seen	A1	oe eg 1.93 and -2.59 with $3 x^{2}+2 x=15$ seen

Additional Guidance is on the next page

29   cont	Additional Guidance	
	1.93 and -2.59 and $3 x^{2}+2 x-15(=0)$ not seen	Zero
	One solution and $3 x^{2}+2 x-15(=0)$ not seen	Zero
	$\frac{3 x^{2}+2 x-15}{(4 x+1)\left(x^{2}+3\right)}=0$ followed by $3 x^{2}+2 x-15=(4 x+1)\left(x^{2}+3\right)$	Zero
	$\frac{3 x^{2}+2 x-15}{(4 x+1)\left(x^{2}+3\right)}=0$ followed by 1.93 and -2.59	M1M1M0M0A0


[^0]:    Mark scheme and Additional Guidance continues on the next 3 pages

