GCSE

MATHEMATICS

8300/1H
Higher Tier Paper 1 Non-Calculator
Mark scheme
June 2020
Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

[^0]Copyright © 2020 AQA and its licensors. All rights reserved.

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

M Method marks are awarded for a correct method which could lead to a correct answer.

A Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.

B Marks awarded independent of method.
ft

SC Special case. Marks awarded for a common misinterpretation which has some mathematical worth.

M dep A method mark dependent on a previous method mark being awarded.

B dep A mark that can only be awarded if a previous independent mark has been awarded.
oe Or equivalent. Accept answers that are equivalent. eg accept 0.5 as well as $\frac{1}{2}$
[a, b] Accept values between a and b inclusive.
[a, b) \quad Accept values $a \leqslant$ value $<b$
3.14... Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416

Use of brackets It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles.

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the student intended it to be a decimal point.

Q	Answer	Mark	Comments
$\mathbf{1}$	$\frac{19}{4}$	B1	

\mathbf{Q}	Answer	Mark	Comments
$\mathbf{2}$	$\binom{3}{-2}$	B1	

Q	Answer	Mark	Comments
$\mathbf{3}$	1000000	B1	

Q	Answer	Mark	Comments
$\mathbf{4}$	$\frac{6}{5}$	B1	

Q	Answer	Mark	Comments	
5	Alternative method 1			
	cos and $\frac{9}{18}$ oe identified	M1		
	60	A1		
	Alternative method 2			
	\sin and $\frac{\sqrt{18^{2}-9^{2}}}{18}$ identified or \tan and $\frac{\sqrt{18^{2}-9^{2}}}{9}$ identified	M1		
	60	A1		
	Additional Guidance			
	Accept an embedded answer, eg $\cos 60=\frac{9}{18}$ with no further working			M1A1
	$180 \div 3=60$			MOAO

Q	Answer	Mark	Comments	
6	Graph A Strong negative	B1		
	Graph B No correlation	B1	allow 'No' or 'N	None'
	Additional Guidance			
	Condone incorrect spelling if intention is clear			
	Allow clear link(s) from the table to the answer line eg an arrow from 'Strong negative' to the Graph A answer line			

	Answer		Mark	Comments	
7	12 in correct position		B1		
	24 in correct position		B1		
	11 in correct position or 33 in correct position or their value in G only is three times their value in the intersection or their four values sum to 80		B1ft	$\mathrm{ft} \frac{1}{4} \times(80-12-$ their 24$)$ ft $\frac{3}{4} \times(80-12-$ their 24$)$ for this mark allow non-integers or values rounded or truncated to the nearest integer	
	$12,24,11$ positions	3 in correct	B1		
	Additional Guidance				
	Mark the Venn diagram only				
					B1B1B1B1

Q	Answer	Mark	Comments	
	Alternative method 1			
	$6.5 \times 9 \text { or } 58.5$ or $6.5 \times 7 \text { or } 45.5$	M1	oe	
	$\begin{aligned} & \frac{6.5 \times 9-2 \times 6.5}{2} \text { or } \frac{58.5-13}{2} \\ & \text { or } \frac{6.5 \times 7}{2} \\ & \text { or } \frac{45.5}{2} \end{aligned}$	M1dep	oe division may be implied$\text { eg } \frac{7}{9}=45.5, \frac{3.5}{9}=22.25 \text { scores M1M1 }$	
	22.75 or $\frac{91}{4}$ or $22 \frac{3}{4}$	A1	oe	
	Alternative method 2			
8	$6.5 \times 9 \text { or } 58.5$ or $6.5 \times 4.5 \text { or } 29.25$	M1	oe	
	$\frac{6.5 \times 9}{2}-6.5$ or $6.5 \times 4.5-6.5$	M1dep	oe eg $6.5 \times(4.5-1)$ or 6.5×3.5	
	22.75 or $\frac{91}{4}$ or $22 \frac{3}{4}$	A1	oe	
	Additional Guidance			
	Answer 22.8 or 23 with 22.75 in working			M1M1A1
	Answer 22.8 or 23 without 22.75 in working			A0

Q	Answer \quad Mark		Comments	
9(a)	First term 2 and Third term 8	B2	B1 one correct or First term 2^{1} or Third term 2^{3} or First term -2 and Third term -8 or $4 x^{2}=16$ (any letter) oe equation or $a r=4$ and $a r^{3}=16$	
	Additional Guidance			
	If answer lines are blank, mark progression first and then working lines			
	Correct answer for 1st term or 3rd term in the progression, but incorrect numerical term on answer line			B0 for that term
	Correct answer for 1st term or 3rd term in the progression, with noncontradictory algebraic term on answer line			B1 for that term
	Correct answers for 1st term and 3rd term in the progression, with noncontradictory algebraic terms on answer lines			B2
	First term 2 Third term 2^{3}			B1
	First term -2 Third term 10			B0
	$4 x=\frac{16}{x}$ (any letter)			B1

Q	Answer	Mark	Comments	
	Alternative method 1			
	3rd term $=9 p$	M1	oe implied by a total of $15 p$	
	$p+5 p+$ their 3rd term $=90$ or $15 p=90$	M1	oe their 3rd term must be a linear expression in terms of $p$$90 \div 15 \text { implies M1 M1 }$	
	6	A1ft	ft their 3rd term, which must be a linear expression in p, or their equation in the form sum of 3 linear terms in $p=90$ allow ft answers rounded to 1 dp or better	
	Alternative method 2			
	$90 \div 3$ or 30	M1	oe	
	$5 p=$ their 30	M1dep	oe	
	6	A1		
	Additional Guidance			
9(b)	For A 1 ft , if not an integer, the answer must be given as a decimal, fully simplified fraction or fully simplified mixed number Once awarded, ignore further incorrect conversions eg $p+5 p+25 p=90,31 p=90, p=\frac{90}{31}, p=3$ (ignore conversion)			M0M1A1ft
	Their 3rd term may first appear in their addition, eg $p+5 p+10 p=90$ implies that $10 p$ is their 3rd term			M0M1
	$(3 \mathrm{rd}$ term $5 p+4), p+5 p+5 p+4=90, p=7.8$			M0M1A1ft
	(3rd term 10p), $p+5 p+10 p=90, p=5.625$			M0M1A1ft
	Sum $15 p$ and/or answer 6 may come from incorrect 3rd term, eg eg1 (3rd term 10p), $p+5 p+10 p=15 p,(15 p=90), p=6$ receives 2nd mark only; they have an incorrect 3rd term and an incorrect total for their 3 terms, but their answer is correct for their total, so equating to 90 is implied even if not seen eg2 (3rd term 10p), $p, 5 p, 10 p, 15 p=90, p=6$			M0M1AOft MOMOAOft
	If their 3rd term has an algebraic coefficient the 2nd mark can be awarded for a correct equation, but A1 cannot be awarded eg (3rd term $n p), p+5 p+n p=90$			M0M1A0

Q	Answer	Mark	Comments	
	Alternative method 1			
	$2400 \div(3+5)$ or $2400 \div 8$ or 300	M1	oe accept $\frac{1}{8}$ of 2400	
	$5 \times$ their 300 or 1500 or $3 \times$ their 300 or 900 or their $300 \div 6$ or 50	M1dep	oe	
	$\begin{aligned} & 5 \times \text { their } 300 \div 6 \\ & \text { or } \\ & (2400-3 \times \text { their } 300) \div 6 \\ & \text { or } \\ & 1500 \div 6 \end{aligned}$	M1dep	oe	
10	250	A1		
	Alternative method 2			
	$2400 \div 6$ or 400	M1	oe	
	their $400 \div(3+5)$ or 50	M1dep	oe $2400 \div 48$ scores M1M1	
	$\begin{aligned} & 5 \times \text { their } 50 \\ & \text { or } 400-(3 \times \text { their } 50) \end{aligned}$	M1dep	oe	
	250	A1		
	Additional Guidance			
	Answer 400 with 1500 or 900 in working			M1M1M0A0
	Answer 400 with 250 in working			M1M1M1A0
	Condone incorrect representation of a division if recovered eg $8 \div 2400=300$			M1

Q	Answer	Mark	Comments
11	Alternative method 1		
	$0.275 \times 3 \text { or } 0.825$ or $0.275 \div 10 \text { or } 0.0275$	M1	oe
	0.0825	A1	
	Alternative method 2		
	$0.08 \ldots$ from division of 33 by 400 or $0.08 \ldots$ from division of 3.3 by 40	M1	
	0.0825	A1	
	Alternative method 3		
	$33 \times \frac{1000}{400}$ or 33×2.5 or $33 \div 4$ or $0.33 \div 4$ or digits 825	M1	oe
	0.0825	A1	

Q	Answer	Mark	Comments	
12(a)	$21 \div 7 \times 2(=6)$ or $21 \div 3=7$ and $6 \div 3=2$ or $21 \div 7=3$ and $6 \div 2=3$ or $7 \times 3=21$ and $2 \times 3=6$	B1	oe eg $6 \div 2=3$ and $7 \times 3=21$	
	Additional Guidance			
	3×2 (=6)			B0
	$7: 2$ (=) $21: 6$ with no other			B0
	$7: 2$ (=) $21: 6$ with multiplic	shown	arrow(s)	B1
	$7: 2$ (=) $14: 4$ (=) $21: 6$			B1
	Do not condone incorrect rep	n of a	vision eg $7 \div 21=3$	B0
	Do not condone incorrect man eg $21 \div 7=3 \times 2=6$	repre	tation	B0
	$21 \div 6=3.5,3.5 \times 2=7$			B1
	$21 \times 2=42,42 \div 7=6$			B1

Q	Answer	Mark	Comments
12(b)	Alternative method 1		
	$\begin{aligned} & 2 \times \pi \times 21 \text { or } \pi \times 42 \\ & \text { or } 42 \pi \\ & \text { or }[131.88,132] \end{aligned}$	M1	oe condone [3.14, 3.142] for π
	$2 \times \pi \times 6 \div 4$ or $\pi \times 12 \div 4$ or 3π or [9.4, 9.43]	M1	oe arc length of quarter circle condone [3.14, 3.142] for π
	$2 \times \pi \times 6 \div 4+2 \times 6$ or $3 \pi+12$ or [21.4, 21.43]	M1dep	oe dep on 2nd M1 this does not imply M1M1M1
	$45 \pi+12$	A1	
	Alternative method 2		
	$\begin{aligned} & 2 \times \pi \times 21 \text { or } \pi \times 42 \\ & \text { or } 42 \pi \\ & \text { or }[131.88,132] \end{aligned}$	M1	oe condone [3.14, 3.142] for π
	$2 \times \pi \times 21 \text { and } 2 \times \pi \times 6 \div 4$ or 42π and 3π or $2 \times \pi \times 21+2 \times 6 \text { or } 42 \pi+12$ or [143.88, 144]	M1dep	oe eg 42π and $[9.4,9.43]$ or $[131.88,132]$ and 3π
	$2 \times \pi \times 21+2 \times \pi \times 6 \div 4$ or $42 \pi+3 \pi$ or 45π or $[141,141.43]$ or $[153,153.43]$	M1dep	$\begin{aligned} & \text { oe } \\ & \text { eg } 42 \pi+[9.4,9.43] \\ & \text { or }[131.88,132]+3 \pi \end{aligned}$
	$45 \pi+12$	A1	

Additional guidance for this question is on the next page

$\begin{aligned} & \text { 12(b) } \\ & \text { cont } \end{aligned}$	Additional Guidance	
	Condone $3(15 \pi+4)$	M1M1M1A1
	Condone, for example, J 42 for up to M1M1M1	
	$21 \pi+3 \pi+12$	M0M1M1A0 on alt 1
	$441 \pi+3 \pi+12$	M0M1M1A0 on alt 1
	$42 \pi+36 \pi+12$	M1M1M0A0 on alt 2
	$441 \pi+36 \pi+12$	MOMOMOAO
	Using πr^{2} instead of $2 \pi r$ throughout	MOMOMOAO
	$45 \pi+12$ in working with incorrect further work, eg $45 \pi+12=57 \pi$	M1M1M1A0

Q	Answer	Mark	Comments	
13(a)	$(x+8)(x-5)$ or $(k=) 3$ or $(x+5)(x-8)$ or $(k=)-3$ or $(x+10)(x-4)$ or $(k=) 6$ or $(x+4)(x-10)$ or $(k=)-6$ or $(x+20)(x-2)$ or $(k=) 18$ or $(x+2)(x-20)$ or $(k=)-18$ or $(x+40)(x-1)$ or $(k=) 39$ or $(x+1)(x-40)$ or $(k=)-39$ or $s=8$ and $t=5$ or $8-5$	M1	oe correct factorisation	
	3	A1	condone embedded answer $x^{2}+3 x-40$	
	Additional Guidance			
	$x^{2}+s x-t x-s t$ with no further working			MOAO
	Ignore incorrect factorisations in working			

Q	Answer	Mark	Comments	
13(b)	Valid reason	B1	eg it should be -2 or 4×-5 isn't 0 or $(2+2)(2-7)=-20$ or $2+2=4$ or $2+2 \neq 0$	
	Additional Guidance			
	'He didn't change the sign on the left'			B1
	'If you substitute 2 it does not give 0'			B1
	$x=2$ is wrong			B1
	$x=-2($ and $x=7)$			B1
	$x=-2$ and $x=-7$			B0
	'One solution is wrong' or 'Only one answer is correct'			B0
	$x=2$			B0
	Ignore statements which do not contradict a correct answer			

Q	Answer	Mark	Comments	
14(a)	$\begin{aligned} & (18=) 2 \times 3^{2} \\ & \text { or }(18=) 2 \times 3 \times 3 \end{aligned}$	M1	$\text { oe eg }(18=) 2^{1} \times 3^{1} \times 3^{1}$ allow 2, 3 and 3 in a factor tree	
	$2^{11} \times 3^{3} \times 5^{6}$	A1	any order SC1 864000000	
	Additional Guidance			
	M1 may be implied eg1 $2 \times 3^{2} \times 2^{10} \times 3 \times 5^{6}$ eg $22^{11} \times 3 \times 3 \times 3 \times 5^{6}$			$\begin{aligned} & \text { M1 } \\ & \text { M1 } \end{aligned}$
	Condone a multiplier of 1 fo eg1 $1 \times 2 \times 3 \times 3$ $\text { eg2 } 1 \times 2^{11} \times 3^{3} \times 5^{6}$	not re	vered	M1 M1A0
	Allow the prime factorisation larger number eg $54 \times 2^{10} \times 5^{6}$ and $54=$	in the	me factorisation of a	M1

Q	Answer	Mark	Comments
14(b)	$\sqrt[3]{2^{6} \times 11^{3}} \text { or } \sqrt[3]{64 \times 11^{3}}$ or $2^{2} \times 11 \text { or } 4 \times 11$ or $\sqrt[3]{85184}$	M1	oe with no fraction in the surd eg $\sqrt[3]{64 \times 1331}$ oe eg $2^{(6 \div 3)} \times 11^{(3 \div 3)}$ or $2^{1} \times 2^{1} \times 11^{1}$
	44	A1	

Q	Answer	Mark	Comments
$\mathbf{1 5}$	$1: 6$	B1	

Q	Answer	Mark	Comments
18	Alternative method 1: substitutes for $4 y$ in first equation then substitutes value of x		
	$2 x+2(4 x-7)=-9$ or $10 x=5$	M1	oe correct elimination of y
	$(x=) \frac{1}{2}$ or $(x=) 0.5$	A1	$\text { oe eg }(x=) \frac{5}{10}$
	$2 x \text { their } \frac{1}{2}+4 y=-9$ or $2 y=4 \times \text { their } \frac{1}{2}-7$	M1dep	oe substitution of their x into either equation
	$\begin{aligned} & (y=)-\frac{5}{2} \text { or } \quad(y=)-2 \frac{1}{2} \\ & \text { or }(y=)-2.5 \end{aligned}$	A1	$\text { oe eg }(y=)-\frac{10}{4}$
	Alternative method 2: equates coefficients		
	Equates coefficients for one unknown and if necessary, rearranges into appropriate form and adds or subtracts equations appropriately	M1	eg 1 changes 1st equation to $4 x+8 y=-18$, rearranges 2nd equation to $2 y-4 x=-7$ and adds to eliminate x eg 2 changes 2nd equation to $4 y=8 x-14$ and subtracts to eliminate y
	Correct value for x or y	A1	
	Substitutes their value into an equation	M1dep	
	Both values correct	A1	

Mark scheme and Additional Guidance continues on next page

Q	Answer	Mark	Com	
Alternative method 3: substitutes for $4 x$ in second equation then substitutes value of y				
18 cont	$\begin{aligned} & 2 y=2(-9-4 y)-7 \\ & \text { or } 10 y=-25 \end{aligned}$	M1	oe correct elimination of x	
	$(y=)-\frac{5}{2} \text { or } \quad(y=)-2 \frac{1}{2}$ or $(y=)-2.5$	A1	$\text { oe eg }(y=)-\frac{25}{10}$	
	$2 x+4 \times \text { their }-\frac{5}{2}=-9$ or $2 \times \text { their }-\frac{5}{2}=4 x-7$	M1dep	oe substitution of their y into either equation	
	$(x=) \frac{1}{2}$ or $(x=) 0.5$	A1	oe eg ($x=$) $\frac{2}{4}$	
	Alternative method 4: solves each unknown separately - substitutes for $4 y$ in first equation then substitutes for $4 x$ in second equation			
	$2 x+2(4 x-7)=-9$ or $10 x=5$	M1	oe correct elimination of y	
	$(x=) \frac{1}{2}$ or $(x=) 0.5$	A1	$\text { oe eg }(x=) \frac{5}{10}$	
	$\begin{aligned} & 2 y=2(-9-4 y)-7 \\ & \text { or } 10 y=-25 \end{aligned}$	M1	oe elimination of x	
	$\begin{aligned} & (y=)-\frac{5}{2} \text { or }(y=)-2 \frac{1}{2} \\ & \text { or }(y=)-2.5 \end{aligned}$	A1	$\text { oe eg }(y=)-\frac{25}{10}$	
	Additional Guidance			
	Note that in alt 4 the 2nd M mark is not dependent			
	In alt 4, allow alt 2 method for each unknown			
	Both answers correct		M1A1M1A1	

Q	Answer	Mark	Comments
19	$\frac{3 x}{10}$	B1	

Q	Answer	Mark	Comments
20(a)	1	B1	

Q	Answer	Mark	Comments
20(b)	$\frac{1}{8}$ or 0.125	B2	$\begin{array}{l}\text { B1 correct expression including at least } \\ \text { one of } \\ \text { changes 32 to 2 }\end{array}$
shows that the negative index means the			
reciprocal			
shows that index $\frac{1}{5}$ means 5th root			
splits the index into the multiplication of			
two indices			

Q	Answer	Mark	Comments	
21	Smallest $3 \sqrt{23}$ 15.6 $\frac{47}{3}$ Largest 2.1^{4}	B2	B1 three values in correct order if the other value were removed eg Smallest $3 \sqrt{23}$ $\begin{array}{ll} & 2.1^{4} \\ 15.6 \\ \text { Largest } & \frac{47}{3} \end{array}$	
	Additional Guidance			
	Mark the answer only			
	Accept equivalent values used on answer lines			

Q	Answer	Mark	Comments
22(a)	$y=k x^{3}$ or $17=4^{3} k$	M1	oe
	$k=17 \div 4^{3}$ or $k=17 \div 64$ or $k=\frac{17}{64}$ or $\frac{17}{64} x^{3}$	M1dep	oe in the form $k=$
	$y=\frac{17}{64} x^{3} \text { or } y=0.265625 x^{3}$	A1	oe equation eg $64 y=17 x^{3}$ SC2 $y=\frac{17}{4^{3}} x^{3} \text { or } y=\frac{17}{64} \times 4^{3}$
	Additional Guidance		
	Allow the proportion sign instead of $=$ for M1 only		

Q	Answer	Mark	Comments
22(b)	$\div 2$	B1	

Q	Answer	Mark	Comments
23	Alternative method 1: works out the value of x using two different methods and shows they are different		
	Any one of $4 x+92=180$ or $5 x+30+x+36=180$ or $6 x+66=180$ or $4 x+x+36+5 x+30+92=360$ or $10 x+158=360$	M1	oe
	($x=$) 22 with M1 seen or $(x=) 19$ with M1 seen or ($x=$) 20.2 with M1 seen	A1	must be correct value for corresponding equation
	A different one of $4 x+92=180$ or $5 x+30+x+36=180$ or $6 x+66=180$ or $4 x+x+36+5 x+30+92=360$ or $10 x+158=360$	M1	oe
	Any two of ($x=$) 22 with M1 seen or $(x=) 19$ with M1 seen or $(x=) 20.2$ with M1 seen and should be equal	A1	must be correct values for corresponding equations oe statement

Mark scheme and Additional Guidance continue on the next page

Mark scheme and Additional Guidance continue on the next page

Q	Answer	Mark	Comments	
	Alternative method 4: uses angle sum of $5 x+30$ and $x+36^{\circ}$ to work out x and then shows other angles do not sum to 180° or all angles do not sum to 360°			
	$5 x+30+x+36=180$ or $6 x+66=180$	M1	oe	
	$(x=) 19$ with M1 seen	A1		
	$\begin{aligned} & 4 \times \text { their } 19+92 \\ & \text { or } \\ & 5 \times \text { their } 19+30+\text { their } 19+36+ \\ & 4 \times \text { their } 19+92 \end{aligned}$	M1dep	oe	
$\begin{gathered} 23 \\ \text { cont } \end{gathered}$	$4 \times 19+92=168$ and should be 180 or $\begin{aligned} & 5 \times 19+30+19+36+4 \times 19+ \\ & 92=348 \end{aligned}$ and should be 360	A1	oe oe statement oe oe statement	
	Additional Guidance			
	Alts 1 and $2 x=20.2$ with M1 not seen			Zero
	Alts 1 and $3 x=22$ with M1 not seen			Zero
	Alts 1 and $4 x=19$ with M1 not seen			Zero
	Allow $20 \frac{1}{5}$ or $\frac{101}{5}$ for 20.2, but do not allow other improper fractions for 20.2, 22 or 19 unless recovered			

\mathbf{Q}	Answer	Mark	Comments
$\mathbf{2 4}$	$\sin y>0$ and $\cos y<0$	B1	

Q	Answer	Mark	Comments
26(a)	$\frac{14}{\sqrt{7}} \times \frac{\sqrt{7}}{\sqrt{7}}$ or $\frac{14 \sqrt{7}}{7}$	M1	
	$2 \sqrt{7}$	A1	do not award if further work eg $\sqrt{14}$
	Additional Guidance		
	Correct answer with no		M1A1

Q	Answer	Mark	Comments
26(b)	240	B3	B2 any correct single value of the form $a \sqrt{b}$ where $a \geqslant 2$ eg $24 \sqrt{100}$ or $12 \sqrt{400}$ or $8 \sqrt{900}$ or $6 \sqrt{1600}$ or $2 \sqrt{14400}$ or correct product of two or more integers eg 24×10 or 8×30 or 6×40 or $2 \times 2 \times 5 \times 4 \times 3$ B1 $(\sqrt{80}=) 4 \sqrt{5}$ or $(\sqrt{18}=) 3 \sqrt{2}$ or correct product of two surds eg $2 \sqrt{800} \times \sqrt{18}$ or $2 \sqrt{180} \times \sqrt{80}$ or $2 \sqrt{10} \times \sqrt{1440}$ or $\sqrt{40} \times \sqrt{80} \times \sqrt{18}$ or $2 \sqrt{10 \times 80 \times 18} \text { or } \sqrt{40 \times 80 \times 18}$ or $2 \sqrt{2 \times 5 \times 4 \times 4 \times 5 \times 2 \times 3 \times 3}$ or $\sqrt{2^{8} \times 5^{2} \times 3^{2}}$ or $\sqrt{57600}$
	Additional Guidance		
	$4 \sqrt{5} \times 3 \sqrt{2} \times 2 \sqrt{10}$		B1
	$4 \sqrt{5} \times 3 \sqrt{2} \times \sqrt{40}$		B1

Q	Answer	Mark	Comments	
27	$9: 25$	B1	oe ratio	
	$3: 5$	B1	oe ratio allow $\sqrt{9}: \sqrt{25}$	
	Additional Guidance			B0
	$25: 9$	$5: 3$	B0	
	Answers transposed	B0B0		

Q	Answer	Mark	Comments	
29	$(x-4)^{3}$	B1	$(x+4)^{3}$ is B0	
	$x^{2}-4 x-4 x+16$ with 3 terms correct or $x^{2}-8 x+k$ where k is a non-zero constant	M1	$\mathrm{ft}(x+4)^{3}$ only	
	$\begin{aligned} & x^{3}-4 x^{2}-4 x^{2}+16 x-4 x^{2}+16 x+ \\ & 16 x-64(+6) \end{aligned}$ or $x^{3}-8 x^{2}+16 x-4 x^{2}+32 x-64(+$ 6) or $x^{3}-12 x^{2}+48 x-64(+6)$	M1dep	oe full expansion of their 4 terms by $(x-4)$ with at least 4 terms correct or full expansion of their 3 terms by $(x-4)$ with at least 3 terms correct $\mathrm{ft}(x+4)^{3}$ only	
	$x^{3}-12 x^{2}+48 x-58$	A1		
	Additional Guidance			
	Using $(x+4)^{3}$ can score a maximum of B0M1M1AO $x^{2}+4 x+4 x+16$ with 3 terms correct or $x^{2}+8 x+k$ where k is a non-zero constant $x^{3}+4 x^{2}+4 x^{2}+16 x+4 x^{2}+16 x+16 x+64(+6)$ or $x^{3}+8 x^{2}+16 x+4 x^{2}+32 x+64(+6)$ or $x^{3}+12 x^{2}+48 x+64$ or $x^{3}+12 x^{2}+48 x+70$			B0M1 B0M1M1A0

[^0]: Copyright information
 AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

