GCSE MATHEMATICS 8300/1F

Foundation Tier Paper 1 Non-Calculator
Mark scheme
November 2018

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

M Method marks are awarded for a correct method which could lead to a correct answer.

A

B
ft

SC Special case. Marks awarded for a common misinterpretation which has some mathematical worth.

M dep \quad A method mark dependent on a previous method mark being awarded.

B dep A mark that can only be awarded if a previous independent mark has been awarded.
oe Or equivalent. Accept answers that are equivalent. eg accept 0.5 as well as $\frac{1}{2}$
[a, b] Accept values between a and b inclusive.
[a, b) \quad Accept values $\mathrm{a} \leq$ value $<\mathrm{b}$
$3.14 \ldots \quad$ Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416
Use of brackets It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the student intended it to be a decimal point.

Question	Answer	Mark	Comments

$\mathbf{1}$	-11	B1	

$\mathbf{2}$	Mode	B1	

$\mathbf{3}$	0.95	B1	

$\mathbf{4}$	Circumference	B1	

Question	Answer	Mark	Comments

Question	Answer	Mark	Comments

Question	Answer	Mark	Comments

6	$\begin{aligned} & 18 \div 3 \text { or } 6 \\ & \text { or } \\ & 18 \times 5 \text { or } 90 \\ & \text { or } \\ & \frac{5}{3} \end{aligned}$	M1	oe	
	30	A1		
	Additional Guidance			
	$18 \times 10 \div 6$ with incorrect or no answer			M1 A0
	Decimals for $\frac{5}{3}$ must be correct to 1 dp or better (ie 1.7, 1.67, etc)			
	$18 \div \frac{3}{5}$ is $\mathrm{M} 1 \quad$ but $\frac{3}{5}$ alone is M0			

7	$3206 \div 7$	M1	may be seen as such as in the 'b	lation attempted ' method
	458	A1		
	Additional Guidance			
	$7 \div 3206$ must be recovered eg by correct use in division sum			
	"Chunking" or build-up must convince that the equivalent to the full division is being attempted (ie reach or go beyond 3206)			
	Condone $3206 \div 420$ (working in seconds) for M1			
	Accept $\frac{3206}{7}$ for M1 unless contradicted by further work			

Question	Answer	Mark	Comments

Question	Answer	Mark	Comments

9	Alternative method 1		
	$\left(1 \frac{1}{4}=\right) \frac{5}{4}$	M1	oe improper fraction
	$\frac{4}{8}$ and $\frac{10}{8}$ or $\frac{2}{4}$ and $\frac{5}{4}$ or $\frac{3.5}{4}$	M1dep	oe common denominator with at least one correct numerator may be seen as start and end of a list
	$\frac{7}{8}$	A1	oe fraction
	Alternative method 2		
	$\left(1 \frac{1}{4}-\frac{1}{2}=\right) \frac{3}{4}$	M1	oe
	$\frac{1}{2}+\text { their }\left(\frac{3}{4} \div 2\right)$ or $1 \frac{1}{4}-\text { their }\left(\frac{3}{4} \div 2\right)$	M1dep	oe
	$\frac{7}{8}$	A1	oe fraction
	Alternative method 3		
	$\left(1 \frac{1}{4}+\frac{1}{2}=\right) 1 \frac{3}{4}$ or $\frac{7}{4}$	M1	oe
	their $1 \frac{3}{4} \div 2$ or their $\frac{7}{4} \div 2$	M1dep	oe
	$\frac{7}{8}$	A1	oe fraction

Question	Answer	Mark	Comments

9 cont	Alternative method 4			
	$\begin{aligned} & (1.25-0.5=) 0.75 \\ & \text { or } \\ & (1.25+0.5=) 1.75 \end{aligned}$	M1	accept equivalent in percentages but must see \% sign	
	$(0.5+0.75 \div 2=0.875$ or $(1.25-0.75 \div 2=0.875$ or $\left(\frac{1.25+0.5}{2}=\right) 0.875$ or 87.5%	M1dep	0.875 must be correct accept equivalent in percentages but must see \% sign	
	$\frac{7}{8}$	A1	oe fraction	
	Alternative method 5			
	Positions of $\frac{1}{2}$ and $1 \frac{1}{4}$ correctly marked on line or correct midpoint marked on line	M1	if more points are marked, labels of $\frac{1}{2}$ and $1 \frac{1}{4}$ must be given or indicated mark intention in terms of exact position accept decimals or equivalent fractions	
	Correct midpoint marked on line and $\frac{3}{4}$ marked as $\frac{6}{8}$ and 1 marked as $\frac{8}{8}$	M1dep	oe fractions with common denominator >4	
	$\frac{7}{8}$	A1	oe fraction	
	Additional Guidance			
	In alternative method 5: $\quad \frac{1}{4}$ marked at $1 \frac{1}{4}$ is sufficient for $1 \frac{1}{4}$			
	In all schemes, award of M1dep means that M2 is awarded			
	Use the scheme that gives the greatest number of marks - ignore errors in the scheme(s) you do not use			

Question	Answer	Mark	Comments

| 10 | $1,5,7$ and 35 | B2 | any order
 B1 for any two or three correct values |
| :---: | :--- | :---: | :--- | :--- |
| | Additional Guidance | | |
| | Their correct values must be identified as answers, and not given in, for
 example, a list of the first ten integers or as values in a calculation | | |
| | If more than 4 answers given, maximum B1 if at least two correct | | |

11(a)	$\frac{5}{6}$	B1	oe fraction, decimal or percentage allow $0.83(3 \ldots)$ or $83(.3 \ldots) \%$
	Additional Guidance		
	Ignore use of probability words unless contradictory		

11(b)	2, 3, 4, 5 and 6 identified	M1		
	20	A1		
	Additional Guidance			
	Values are identified even if used in a wrong calculation eg $2 \times 3 \times 4 \times 5 \times 6$ or answer 23456			
	20 is M1A1 unless clearly obtained from wrong working			

12	$1 \frac{1}{7}$	B1	

$\mathbf{1 3}$	18	B1	

$\mathbf{1 4}$	13	B1	

Question	Answer	Mark	Comments

15	$A D C=110$ or $B A D=180-110 \text { or } B A D=70$ or $B C D=180-110 \text { or } B C D=70$ or any indication that angle $E A D=$ angle $E D A$ or any indication that angle $B C D=$ angle $A D E$	M1	eg both written as x or both having the same value	
	$E D A=180-110$ or $E D A=70$ or $E A D=180-110$ or $E A D=70$	M1dep	may be seen on diagr	
	40	A1		
	Additional Guidance			
	Angle values must be identified with the correct angle, either by notation or use of the diagram Notation such as $D=110$ or $C=70$ is not acceptable (although marks may still be awarded for correct position of angles on diagram)			
	Work on the diagram can score up to M2			
	Subject to the previous comment, award the higher mark for work seen on diagram and work seen in working space			
	lgnore incorrect angles when awarding up to M2, but any incorrect work cannot score M2A1			
	40 marked as angle $A E D$ on diagram but :- 180 on answer line or no sign of 40 as final answer in working			M2A0

Question	Answer	Mark	Comments

16	$\begin{aligned} & 3: 18 \text { or } 18: 3 \\ & \text { or } \\ & \frac{1}{3}: 1 \text { or } 1: \frac{1}{3} \\ & \text { or } \\ & 6 \times 3 \end{aligned}$	M1	oe both ratios correc the values for a are additional scaling) eg $6: 36$ and $6: 2$	nore
	18	A1		
	Additional Guidance			
	Do not accept words instead of ratios for M1			
	Accept embedded answers eg $b=18 c$			M1A1
	$\begin{array}{llll}1: 6 & 2: 12 & 3: 18 & 4: 24(e t c)\end{array}$			M1
	18-3 (= 15)			M1A0

Question	Answer	Mark	Comments

17(a)	Ticks 'No' and gives correct explanation indicating her error	B1	eg It should be 0.03 0.3 would give 30% It's 10 times too big You need to divide by 10 as well	
	Additional Guidance			
	'Yes' ticked			B0
	If 'No' is not ticked, explanation must include a decision that the statement is incorrect 'No' not ticked and 'it should be 0.03 ' (only implies 'No') 'No' not ticked and 'it should be 0.03 so she is wrong'			B0 B1
	It is not sufficient to only show a different correct method, eg 'No' and 'divide by 100 and multiply by 3 ' eg ' No ' and 'she has divided by 10 and multiplied by 3 but she should have divided by 100 then multiplied by 3 '			B0 B1
	'No' and '1700 $\times 0.03$ ' (a correction of Laura's method)			B1
	Calculating the correct answer must come with the correct evaluation of Laura's method eg 'No' and 'should be 51' eg 'No' and 'Laura gets 510 but it should be 51 '			B0 B1

Question	Answer	Mark	Comments

17(b)	Ticks 'No' and gives correct explanation	B1	eg $\frac{30}{29}$ is bigger than 1 58 is from $\frac{29}{30}$ the answer would have to be bigger than 60 it will be a decimal	
	Additional Guidance			
	'Yes' ticked			B0
	'60 doesn't divide by 29' oe			B0
	'No' ticked and 'the numerator and denominator are wrong way round'			B1
	If 'No' is not ticked, explanation must include a decision that the statement is incorrect 'No' not ticked and 'it should be more than 60' (only implies 'No') 'No' not ticked and 'it should be more than 60 so she is wrong'			B0 B1
	'No' ticked and $60 \div 29=2 .(\ldots)$ then $2 .(\ldots) \times 30=[60,70)$ accept 2 r2 for 2.(...)			B1
	'No' ticked and $30 \div 29=1 .(\ldots)$ and $1 .(\ldots) \times 60=[60,70)$ accept 1 r 1 for 1.(...)			B1
	'No' ticked and 'because it's a top heavy fraction' 'No' ticked and 'because it's a top heavy fraction so it's bigger than 1'			B0 B1
	'No' ticked and ' $1 \frac{1}{29} \times 60$ ' 'No' ticked and ' $1 \frac{1}{29} \times 60$ so the answer is over 60 '			B0 B1

Question	Answer	Mark	Comments

Question	Answer	Mark	Comments

19	3.5 or $3 \frac{1}{2}$ or 49 or $(49=) \frac{98}{2}$	M1		
	$3.5-49$ or $49-3.5$ or $3 \frac{1}{2}-49$ or $49-3 \frac{1}{2}$ or $\frac{7}{2}-\frac{98}{2}$ or $\frac{98}{2}-\frac{7}{2}$	M1dep	45.5 (oe) implies M2	
	-45.5 or $-45 \frac{1}{2}$ or $-\frac{91}{2}$	A1		
	Additional Guidance			
	$\frac{7}{2}$ without $\frac{98}{2}$			M0
	7^{2} without 49			M0
	$\frac{7}{2}-7^{2}$ (no further correct work)			M0
	$7^{2}=14,3.5-14=-10.5$			M1 M0A0
	$\frac{7}{2}-49$			M1
	$3.5-7^{2}$			M1

Question	Answer	Mark	Comments

20	Alternative method 1			
	$3 x=19+8 \text { or } 3 x=27$ or $(19+8) \div 3 \text { or } \frac{27}{3}$	M1	accept in 'flow chart' $\text { eg }(x \rightarrow) \times 3 \rightarrow-8 \rightarrow 19$ and $\leftarrow \div 3 \leftarrow+8 \leftarrow 19$ enough for M1	
	9	A1		
	Alternative method 2			
	$x-\frac{8}{3}=\frac{19}{3}$	M1		
	9	A1		
	Additional Guidance			
	$3 \times 9-8(=19)$			M1 A0

Question	Answer	Mark	Comments

	Alternative Method 1								
	Lists at least 5 correct combinations or at least 5 correct outcomes or constructs correct twoway table eg 17 and 12 or 29 17 and 23 or 40 17 and 15 or 32 17 and 16 or 33 12 and 23 or 35 12 and 15 or 27 12 and 16 or 28 23 and 15 or 38 23 and 16 or 39 15 and 16 or 31 or							M1	outcomes may be seen in the two-way table ignore additional combinations such as 17 and 17 for M1 ignore any totals in a correctly constructed two-way table 17 and $12 \& 12$ and 17 are accepted as two different combinations
21		$\begin{gathered} \text { orrec } \\ \text { 32, } \\ 32, \\ \hline \mathbf{1 7} \\ \hline \\ \hline 29 \\ \hline 40 \\ \hline 32 \\ \hline 33 \end{gathered}$	list 12 29 	or tw 5, 2 , 38 2	$10-w$ 23 40 40 35 38 39	3 38, 31 15 32 27 38 31	16 16 33 28 39 31	A1	accept ticks/crosses with correct pairs instead of values in the two-way table, it is acceptable to have only one set of ten cells completed (top right or bottom left) if all correct accept ticks and/or crosses in cells do not accept incorrect combinations such as 17 and 17 for A1

The Additional Guidance for Q21 is on the next page

21cont	Additional Guidance						
	Correct answer with no incorrect working						M1A1A1
	If work is crossed out, this may be the removal of totals not above 30 and these should still be considered if appropriate						
	This example shows that the answer 0.7 may not score full marks.						M1A0A1ft
		17	12	23	15	16	
	17		29	40	32	33	
	12	29		36	27	28	
	23	40	36		37	39	
	15	32	27	37		31	
	16	33	28	39	31		
	and answer of 0.7						
	This is an example of following through from their table to give A1ft.						M1A0A1ft
		17	12	23	15	16	
	17		29	40	32	33	
	12	29		35	27	28	
	23	40	36		38	39	
	15	32	27	37		21	
	16	33	28	39	21		
	and answer of 0.6						
	Ignore use of probability words unless contradictory						

Question	Answer	Mark	Comments

22(a)	x	-2	-1	0	1	2	B1	
	y	4	1	0	1	4		

22(b)	Plots their points correctly or restarts with 4 or 5 correct points plotted	M1	$\pm \frac{1}{2}$ square tolerance allow one error	
	Correct graph	A1	smooth quadratic curve through points	
	Additional Guidance			
	Allow $\pm \frac{1}{2}$ square tolerance for curve passing through points			
	If their points do not form a quadratic curve, it is maximum M1			
	The 'base' of the quadratic curve should be a smooth fairly flat curve, not a pointed shape			
	Ignore additional points beyond $x=2$ and $x=-2$			
	Ignore extended graph beyond $x=2$ and $x=-2$			

22(c)	Draws a horizontal line from 2.6 on the y-axis to their graph	M1	implied by correct vertical line down to the x-axis from correct point or at least one correct value seen for their graph	
	Correct readings from their graph	A1ft	must see both values	
	Additional Guidance			
	Positive value only or negative value only given			M1 A0
	Tolerance on readings of $\pm \frac{1}{2}$ square			
	It is sufficient, for M1, for the horizontal line to meet the graph once			
	No graph and answer of 1.6			MOAO

Question	Answer	Mark	Comments

23(a)	-1	B1	

23(b)	$n^{2}+n$ or $n+n^{2}$	B1	
	Additional Guidance		
	Accept $1 n^{2}+1 n$ or $1 n^{2}+n$ or $n^{2}+1 n$ etc...	B1	
	Do not accept $n \times n+n$ or $n^{2}+n 1$	B0	

23(c)	Alternative method 1			
	$\begin{aligned} & (n+n+1=) 2 n+1 \\ & \text { and } \\ & \text { states that } 2 n \text { is even } \\ & \text { and } \\ & \text { states that even }+1=\text { odd or } \\ & \text { even }+ \text { odd }=\text { odd } \end{aligned}$	B2	$\begin{aligned} & \text { B1 } \\ & (n+n+1=) 2 n+1 \end{aligned}$	
	Alternative method 2			
	States that one of the numbers is even and the other is odd and states that even + odd = odd	B2	B1 states that one of the numbers is even and the other is odd or states that even + odd = odd	
	Additional Guidance			
	Numerical examples with no other explanation			B0
	$n+n+1=2 n+1=3 n$			B0

Question	Answer	Mark	Comments

$\mathbf{2 4}$	$\frac{\sqrt{3}}{2}$	B1	

Question	Answer	Mark	Comments

25	Alternative method 1		
	$\frac{17}{2}$ or $\frac{8}{3}$	M1	oe fractions
	$\text { their } \frac{17}{2} \times \text { their } \frac{3}{8}$	M1	conversion of both mixed numbers to improper fractions and multiplication of the conversion of $8 \frac{1}{2}$ by the reciprocal of the conversion of $2 \frac{2}{3}$
	$\frac{51}{16}$	A1	oe fraction or decimal
	$3 \frac{3}{16}$	B1ft	oe mixed number ft correct conversion of their improper fraction to a mixed number
	Alternative metho		
	$\frac{17}{2}$ or $\frac{8}{3}$	M1	oe fractions
	$\frac{51}{6} \div \frac{16}{6}$	M1	conversion of both mixed numbers to improper fractions, correct conversion to improper fractions with a common denominator and division of the conversion of $8 \frac{1}{2}$ by the conversion of $2 \frac{2}{3}$
	$\frac{51}{16}$	A1	oe fraction or decimal
	$3 \frac{3}{16}$	B1ft	oe mixed number ft correct conversion of their improper fraction to a mixed number

The Additional Guidance for question 25 is on the next page

Question	Answer	Mark	Comments

$\begin{gathered} 25 \\ \text { cont } \end{gathered}$	Additional Guidance				
	Working with decimals				0,3 or 4
	Ignore incorrect attempt to simplify a mixed number eg $3 \frac{3}{16}=3 \frac{1}{8}$				M1M1A1B1
	$3 \frac{3}{16}$ seen, then $\frac{51}{16}$ on answer line				M1M1A1B0
	$\frac{9}{2}$ and $\frac{8}{3}$,	$\frac{27}{6} \div \frac{16}{6}$,	$\frac{27}{16}$,	$1 \frac{11}{16}$	M1M1A0B1ft
	$\frac{9}{2}$ and $\frac{8}{3}$,	$\frac{27}{6} \div \frac{16}{6}$,	$1 \frac{11}{16}$		M1M1A0B1ft
	$\frac{9}{2}$ and $\frac{4}{3}$,	$\frac{27}{6} \div \frac{8}{6}$,	$\frac{27}{8}$,	$3 \frac{3}{8}$	M0M1A0B1ft

Question	Answer	Mark	Comments

26	Alternative method 1			
	Correct reading of at least one value at 0 hours $[46,50]$ at 1 hour $[63,67]$ at 2 hours $[80,84]$ at 3 hours $[96,100]$ at 4 hours $[114,118]$	M1	may be seen on graph	
	subtraction of two values correct number of hours	M1	division by 1 may be implied	
	17	A1	SC1 29	
	Alternative method 2			
	A difference in the range for 1 hour $[15,19]$ for 2 hours $[32,36]$ for 3 hours $[49,53]$ for 4 hours $[66,70]$	M1	may be seen on graph	
	difference	M1	division by 1 may be implied	
	17	A1	SC1 29	
	Additional Guidance			
	$(119-42) \div 4=19.25$			MOM1 A0
	for 2nd M1 in Alt 1, subtraction must be in the correct order unless recovered			
	17 does not imply three marks, so working must be checked eg $(110-42) \div 4=17$			MOM1A0

Question	Answer	Mark	Comments

Question	Answer	Mark	Comments

Question	Answer	Mark	Comments

| $27\left(\begin{array}{l}\text { Ticks 'Her prediction could be too } \\ \text { low or too high' } \\ \text { and } \\ \text { explains that fewer landings in } \\ \text { winter would make it too low, but } \\ \text { fewer landings at night would make } \\ \text { it too high } \\ \text { or states that the actual numbers } \\ \text { are not given }\end{array}\right.$ | B2 | oe reason
 B1
 ticks 'Her prediction could be too low or
 too high' |
| :---: | :--- | :---: | :--- | :--- |
| | Additional Guidance
 Ticks 'Her prediction could be too low or too high' and states that there
 is not enough data | B1 only |

Question	Answer	Mark	Comments

The Additional Guidance for question 28 is on the next page

Question	Answer	Mark	Comments

$\mathbf{2 8}$ cont	Additional Guidance	If comparing 72° to 90°, they must state that they are referring to the exterior angles
	If 'Yes' is ticked, M1 can still be scored	
	If neither box is ticked, 'No' must be implied by the explanation for M1A1	

29	Alternative method 1			
	$\left(6^{2}=\right) 36 \text { or }\left(8^{2}=\right) 64$ or 100 or $\sqrt{100}$			
	10	A1		
	their $10=5 a$ or $(\text { their } 10)^{3}=125 a^{3}$ or $1000=125 a^{3}$ or $8=a^{3}$	M1		
	2	A1ft	ft their 10 with both	d marks scored
	Alternative method 2			
	5 or a	M1		
	5a	A1		
	their $5 a=\sqrt{100}$ or their $5 a=10$	M1	$(a=) \frac{\sqrt{100}}{5} \text { or }(a=)$	plies M1A1M1
	2	A1ft	ft their $5 a$ with both	d marks scored
	Additional Guidance			
	Use the scheme that gives the better mark eg1 $\sqrt{14^{2}}=5 a, 14=5 a, a=2.8$ scores MOAOM1AO on alt 1 and M1A1MOAO on alt 2 eg2 $\sqrt{100}=5 a^{3}, \quad 10=5 a^{3}, a=\sqrt[3]{2}$ scores M1A1MOAO on alt 1 and M1AOM1A1ft on alt 2			Award M1 A1M0A0 Award M1A0M1A1ft

Question	Answer	Mark	Comments

30	Alternative method 1		
	280-80 or 200	M1	
	their $200 \div 80(\times 100)$ or $2.5(\times 100)$	M1dep	oe
	250	A1	
	Alternative method 2		
	$280 \div 80$ or 3.5	M1	oe
	$280 \div 80 \times 100(-100)$ or their $3.5 \times 100(-100)$ or $350(-100)$ or (their $3.5-1)(\times 100)$ or 2.5 ($\times 100$)	M1dep	oe
	250	A1	

Question	Answer	Mark	Comments

