GCSE
 Mathematics

43652H Paper 2
Mark scheme

43652H
November 2016

Version/Stage: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.
If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

M	Method marks are awarded for a correct method which could lead to a correct answer.
A	Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.
B	Marks awarded independent of method.
ft	Follow through marks. Marks awarded for correct working following a mistake in an earlier step.
SC	Special case. Marks awarded for a common misinterpretation which has some mathematical worth.
M dep	A method mark dependent on a previous method mark being awarded.
B dep	A mark that can only be awarded if a previous independent mark has been awarded.
oe	Or equivalent. Accept answers that are equivalent.
	e.g. accept 0.5 as well as $\frac{1}{2}$
[a, b]	Accept values between a and b inclusive .
[a, b)	Accept values a \leq value $<$ b
$3.14 \ldots$	Accept answers which begin 3.14 e.g. 3.14, 3.142, 3.1416
Q	Marks awarded for quality of written communication
Use of brackets	It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a candidate has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the candidate. In cases where there is no doubt that the answer has come from incorrect working then the candidate should be penalised.

Questions which ask candidates to show working

Instructions on marking will be given but usually marks are not awarded to candidates who show no working.

Questions which do not ask candidates to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Candidates often copy values from a question incorrectly. If the examiner thinks that the candidate has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the candidate intended it to be a decimal point.

Paper 2 Higher Tier

2(a)	60-24-9 or 27	M1	oe	
	$100-42$ or $42+58(=100)$ or 58 or $(100-42) \div 2$ or 29	M1	oe	
	$\begin{aligned} & 29-9 \text { or } 20 \\ & \text { or } 29-27 \text { or } 2 \end{aligned}$	M1dep	dep on 2nd M1 dep on both M marks	
	Fully correct table 24 9 $\mathbf{2 7}$ 60 18 20 2 40 42 29 29 100	A1		
	Additional Guidance			
	Allow use of a letter in the table with the letter worked out in the working			
	If there are two tables mark their best attempt			
	58 can be implied by total part time and total not working			

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

Alternative method 1

$180-152$ or 28 or $(360-152 \times 2) \div 2$	M1	$152-90$ or 62
their 28×2 or $(360-152 \times 2)(\div 2 \times 2)$	M1dep	$180-2 \times$ their 62 or $(180-90-$ their 62$) \times 2$
56	A1	

Alternative method 2

3

720 (used for the hexagon)	M1	540 used for a pentagon
$(720-4 \times 152) \div 2$ or $112 \div 2$	M1dep	$540-152-152-90-90$
56	A1	

Additional Guidance

Angles may be on the diagram but must be in the correct place
28 must be for a correct angle
If diagram or working shows that 28 is for an incorrect angle then the method is incorrect,
eg
$y=28$ (on diagram in the wrong place)
Answer 28 degrees

4(a)	$250 \div 5 \times 4 \text { or } 200$ or $250 \div 5$ or 50	M1	oe	
	200 and 50	A1		
	Additional Guidance			
	Sand 50 and Cement 200			M1A0
	$250 \div 5=50,250 \div 4=62.5$, Sand 62.5, Cement 50			M1A0
	Allow transcription error if clear in the working			

Q	Answer	Mark	Comments

Alternative method 1

25×3 or 75 or 25×4 or 100 or 25×5 or 125	M1	Total cement Sand Mix		
$25 \times 3 \times 4$ or 300 or 75×4 or 300 or $25 \times 4 \times 3$ or 100×3 or 300	M1dep	Total sand		
or 75×5				
or $25 \times 5 \times 3$				
or 125×3			\quad Total mix	375
:---				

Alternative method 2 (uses part (a))

$25+50$ or 75 or $200 \div 2$ or 100 or $(200+50) \div 2$ or 125	M1	Total cement Sand Mix	
$100+200$ or 300 or $25+50+100+200$ or $125+250$	M1dep	Total sand Total mix Total mix	
375	A1		
Alternative method 3 (uses part (a))			
Scale factor 1.5 seen or implied, eg $\frac{75}{50}$ or 50×1.5 or 75	M1		
200×1.5 or 300			
or 250×1.5	M1dep	Total sand 375 Total mix	

Q	Answer	Mark	Comments

7(a)	$\pi \times 6^{2}$ or $\pi \times 36$	M1	oe	
	[113, 113.2] or 36π	A1		
	Additional Guidance			
	$\pi 36$			M1A0

7(b)	20×50 or 1000	M1	oe	
	their 1000 - their $[113,113.2]$	M1dep	oe	
	[886.8, 887] or $1000-36 \pi$	A1ft	ft their part (a)	
	Additional Guidance			
	Do not ignore incorrect further working for the A mark, eg $1000-36 \pi=964 \pi$			M1M1A0

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

8 Alt 1 of 3 Alt 2 of 3	Alternative method 1		
	$53-46 \text { or } 7$ or 53 million - 46 million or 7 million	M1	oe
	$\frac{7}{46}(\times 100)$ or $0.152(\ldots)$	M1dep	oe Accept 0.15 if correct method shown
	15.2(...) (\%)	A1	Accept 15(\%) if correct method shown
	Alternative method 2		
	$\frac{53}{46}(\times 100) \text { or } 1.152 \ldots$ or 115.2(...)	M1	oe Accept 1.15 if correct method shown Accept 115 if correct method shown Accept 0.15 if correct method shown
	$\begin{aligned} & 1.152 \ldots-1 \text { or } 0.152(\ldots) \\ & \text { or } 115.2(\ldots)-100 \end{aligned}$	M1dep	
	15.2(...) (\%)	A1	Accept 15(\%) if correct method shown

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

8 cont Alt 3 of 3	Alternative method 3			
	Any correctly evaluated percentage of 46 (million)	M1	eg 1 (\%) is 0.46 (million) $5(\%)$ is 2.3 (million) $10(\%)$ is 4.6 (million)	
	$15(\%)$ (increase) is 52.9 (million) or 15.1 (\%) (increase) is 52.946 (million) or $15.2(\%)$ (increase) is 52.992 (million) or 15.3 (\%) (increase) is 53.038 (million) or 15.4 (\%) (increase) is 53.084 (million) or 15.5(\%) (increase) is 53.13 (million)	M1dep	oe $15(\%)$ is 6.9 or $15.1(\%)$ is or $15.2(\%)$ is or $15.3(\%)$ is or $15.4(\%)$ is or $15.5(\%)$ is and 7 (million)	
	15.2(...) (\%)	A1	Accept 15(\%) above (or bet below 53 mill with an answ million)	trials listed an answer), the other illion (or 7
	Additional Guidance			
	Incorrect number of zeros used for millions cannot score A mark			
	15(\%) scores at least 2 unless clearly from incorrect working			

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

Q	Answer	Mark	Comments

Q	Answer	Mark	Comments

11(a)	$\begin{aligned} & 0.3 \text { or } \frac{3}{10} \\ & \text { and } \\ & 0.7 \text { or } \frac{7}{10} \end{aligned}$	B1	1st pair of branches fully correct
	$\begin{aligned} & 0.8 \text { or } \frac{8}{10} \text { or } \frac{4}{5} \\ & \text { and } \\ & 0.2 \text { or } \frac{2}{10} \text { or } \frac{1}{5} \end{aligned}$	B2	2nd and 3rd pairs of branches fully correct B1 for 2nd or 3rd pairs of branches fully correct
	Additional Guidance		

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

12(a)	Draws a right-angled triangle to work out gradient using grid lines or $\frac{8-2}{2(-0)}$ or $c=2$ seen or implied or $2 m=6$	M1	oe	
	Gradient $=3$ seen or implied or $m=3$	M1dep		
	$y=3 x+2$	A1	oe	
	Additional Guidance			
	$3 x+2$			M1M1A0
	$y=3 x-2$			M1M1A0
	$y=a x+2$ where $a \neq 3$			M1

12(b)	Two correct points plotted or calculated	M1		
	Fully correct straight ruled line	A1	Mark intention	
	Additional Guidance			
	For the A mark the line must extend from $(0,9)$ to $(9,0)$			

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

12(c)	Indication of point of intersection of their lines or $9-x=\frac{1}{2} x$ or $x+\frac{1}{2} x=9$ or $y=\frac{1}{2}(9-y)$	M1	oe Eliminates a variable
	$x=6$ and $y=3$ or (6,3)	A1ft	ft their graph
	Additional Guidance		

13(a)	$30 x^{3} y^{7}$	B2	B1 for two correct terms	
	Additional Guidance			
	Do not ignore fw for B2			
	$30 \times x^{3} \times y^{7}$			B1
	$30 \times x^{3} y^{7}$			B1
	$x^{3} y^{7} 30$			B1
	$7 x^{3} \times 4 y^{7}$			B1
	Do not allow addition sign, eg $10 x^{3}+3 y^{7}$			B0

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

13(b)	$x^{2}-3 x+7 x-21$	M1	Allow one error	
	$x^{2}+4 x-21$	A1		
	Additional Guidance			
	Do not ignore fw unless attempting to solve the equation			
	$x^{2}-3 x-21$ or $x^{2}+7 x-21 \quad$ (one error)			M1A0
	$x^{2}-21$ (two errors)			MOAO
	$x^{2}-4 x-21$ with no other working (two errors)			MOAO

13(c)	8 and -2 or $x=8$ and $x=-2$	B1	Any order
	Additional Guidance		

13(d)	$2 x y(4 x+3 y)$	B2	B1 for a correct partial factorisation ie $\begin{aligned} & x\left(8 x y+6 y^{2}\right) \\ & y\left(8 x^{2}+6 x y\right) \\ & 2\left(4 x^{2} y+3 x y^{2}\right) \\ & 2 x\left(4 x y+3 y^{2}\right) \\ & 2 y\left(4 x^{2}+3 x y\right) \\ & x y(8 x+6 y) \end{aligned}$
	Additional Guidance		

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

Alternative method 1

90 is 75%	M1	oe
$90 \div 75 \times 100$	M1dep	oe
120	A1	
$\frac{1}{3} \times 120$ or 40	M1	
$120-40=80$ or $120 \div 3 \times 2=80$		

Alternative method 2
14

80 is two-thirds or 80 is $66.6(\ldots)(\%)$	M1	oe	
$80 \div 2 \times 3$	M1dep	oe	
120	A1		
$\frac{25}{100} \times 120$ or 30 or 75% or $\frac{75}{100}$	M1	oe	
$120-30$ or 90 or $\frac{75}{100} \times 120$ and $90-10=80$	A1		
Additional Guidance			

Q	Answer	Mark	Comments

15(a)	$\begin{aligned} & 10 \times 4 \text { or } 40 \\ & \text { or } 5 \times 2.8 \text { or } 14 \\ & \text { or } 30 \times 1 \text { or } 30 \end{aligned}$	M1		
	$40+14+30$	M1dep	Allow one error	
	84	A1		
	Additional Guidance			
	Beware of 30 from an incorrect method, eg $10 \div 4=2.5,5 \div 2.8=1.78(\ldots), 30 \div 1=30,30$ from wrong working or $6 \times 5=30 \quad$ (first bar)			$\begin{aligned} & \text { M0 } \\ & \text { M0 } \end{aligned}$

$\mathbf{1 5 (b)}$	$15<t \leq 25$	B 1		
	Additional Guidance			

| $\mathbf{1 6}$ | $\frac{1}{3}$ and $\frac{5}{7}$ | B1 for 2 correct and 1 incorrect
 or for 1 correct and 1 incorrect
 or for 1 correct | |
| :---: | :---: | :---: | :--- | :--- |
| | Additional Guidance | | |

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

17(a)	$S-2 \pi r^{2}=2 \pi r h$ or $S=2 \pi r(h+r)$ or $\frac{S}{2 \pi r}=h+\frac{2 \pi r^{2}}{2 \pi r}$ or $\frac{S}{2 \pi r}=h+r$	M1	oe	
	$h=\frac{S-2 \pi r^{2}}{2 \pi r}$ or $h=\frac{S}{2 \pi r}-r$	A1	oe	
	Additional Guidance			
	$\frac{S-2 \pi r^{2}}{2 \pi r}$ or $\frac{S}{2 \pi r}-r$ implies M1			M1A0
	$\frac{S-2 \pi r^{2}}{2}=\pi r h$			M1
	$S=2 \pi\left(r h+r^{2}\right) \quad$ (not enough)			M0

Q	Answer	Mark	Comments

Alternative method 1 (uses part (a))

$(h=) \frac{95 \pi-2 \pi r^{2}}{2 \pi r}$	M1	oe or Correctly substitutes at least one value into their equation
$(h=) \frac{S-2 \pi \times 5.3 \times 5.3}{2 \pi \times 5.3}$	M1dep	oe Any unsimplified version of the answer
$(h=) \frac{95 \pi-2 \pi \times 5.3 \times 5.3}{2 \pi \times 5.3}$	A1	B1ft
$3.66 \ldots$	Accept 4 if working shown ft their value rounded to 1 sf or 2 sf	
3.7		

Alternative method 2 (uses the original equation)
17(b)

$95 \pi=2 \pi h \times 5.3+2 \pi \times 5.3 \times 5.3$	M1	oe Correctly substitutes both values into the original equation	
$(h=) \frac{95 \pi-2 \pi \times 5.3 \times 5.3}{2 \pi \times 5.3}$	M1dep	oe Any unsimplified version of the answer	
3.66...	A1		
3.7	B1ft	Accept 4 if working shown ft their value rounded to 1 sf or 2 sf	
Additional Guidance			
It a student is following through from an incorrect part (a) they can score the first M1 and the B1ft only			M1M0A0B1ft
Some useful values$\begin{aligned} & 5.3 \times 5.3=28.09 \quad 2 \pi \times 5.3 \times 5.3=176.49 \ldots \quad 95 \pi=298.45 \ldots \\ & 95 \pi-2 \pi \times 5.3 \times 5.3=121.95 \ldots \quad 2 \pi \times 5.3=33.30 \ldots \end{aligned}$			

Q	Answer	Mark	Comments

18(a)	$y<\frac{1}{x^{2}}$ or $y=\frac{\mathrm{k}}{x^{2}}$	M1	oe	
	$\begin{aligned} & 20=\frac{k}{2^{2}} \\ & \text { or }(k=) 2^{2} \times 20 \\ & \text { or }(k=) 80 \\ & \text { or }\left(\frac{1}{k}=\right) \frac{1}{80} \end{aligned}$	M1dep	oe	
	$y=\frac{80}{x^{2}}$	A1	oe	
	Additional Guidance			
	$y \propto \frac{k}{x^{2}}$			M1

18(b)	$5=\frac{80}{x^{2}}$ or $x^{2}=16$	M1	oe ft their equation from part (a)
	4	A1	Condone 4 and - 4
	Additional Guidance		

19(a)	$\frac{x}{\sin 19}=\frac{8}{\sin 123}$	M1	oe $\frac{x}{0.325 \ldots}=\frac{8}{0.838 \ldots}$
	$\frac{8 \sin 19}{\sin 123}$	M1dep	$\frac{8 \times 0.325 \ldots}{0.838 \ldots}$
	3.1...	A1	Accept 3 with work
	Additional Guidance		
	For the method marks accept rounded or truncated values		

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

19(b)	$\sin 123^{\circ}=\sin 57^{\circ}$ and $\cos 123^{\circ}=-\cos 57^{\circ}$	B2	B1 for 2 correct and 1 incorrect or for 1 correct and 1 incorrect or for 1 correct and 0 incorrect

$\mathbf{1 9}$ (c)	$3.1 \ldots$	B 1 ft	ft their answer to part (a)	
	Additional Guidance			

Q	Answer	Mark	Comments

Q	Answer	Mark	Comments

Q	Answer	Mark	Comments

21	$3 x^{2}=4 x+2$	M1	Equation must be	
	$3 x^{2}-4 x-2(=0)$	A1		
	$\begin{aligned} & \frac{--4 \pm \sqrt{(-4)^{2}-4 \times 3 \times-2}}{2 \times 3} \\ & \text { or } \frac{4 \pm \sqrt{16+24}}{6} \\ & \text { or } \frac{4 \pm \sqrt{40}}{6} \end{aligned}$	M1	Allow one error	
	$\begin{aligned} & \frac{--4 \pm \sqrt{(-4)^{2}-4 \times 3 \times-2}}{2 \times 3} \\ & \text { or } \frac{4 \pm \sqrt{16+24}}{6} \\ & \text { or } \frac{4 \pm \sqrt{40}}{6} \end{aligned}$	A1ft	Fully correct for th	
	$x=1.7$ and $x=-0.4$	A1ft	ft their equation	
	Additional Guidance			
				One correct answer with no working, eg $x=1.7 \ldots$ implies 3 marks M1A1M1

Q	Answer	Mark	Comments

22 Alt 1 of 4 Alt 2 of 4	Alternative method 1		
	$10^{2}=12^{2}+15^{2}-2 \times 12 \times 15 \cos A$	M1	
	$\frac{12^{2}+15^{2}-10^{2}}{2 \times 12 \times 15}$ or $0.74(7 \ldots$) or 0.75	M1dep	
	$(A=)[41.4,42]$	A1	$\begin{aligned} & \sin [41.4,42] \\ & \text { or }[0.66,0.67] \end{aligned}$
	$\sin \left(\right.$ their 41.64) $=\frac{h}{12}$	M1dep	
	[7.9, 8]	A1ft	ft their angle A
	Alternative method 2		
	$12^{2}=10^{2}+15^{2}-2 \times 10 \times 15 \cos B$	M1	
	$\frac{10^{2}+15^{2}-12^{2}}{2 \times 10 \times 15}$ or $0.60 \ldots$	M1dep	
	$(B=)[52.8,53.2]$	A1	$\begin{array}{\|l} \sin [52.8,53.2] \\ \text { or }[0.79,0.8] \end{array}$
	$\sin \left(\right.$ their 52.89) $=\frac{h}{10}$	M1dep	
	[7.9, 8]	A1ft	ft their angle B

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

	Alternative method 3		
	$12^{2}-x^{2}=10^{2}-(15-x)^{2}$	M1	oe $h^{2}=12^{2}-x^{2} \text { and } h^{2}=10^{2}-(15-x)^{2}$
	$144-x^{2}=100-\left(225-15 x-15 x+x^{2}\right)$	M1dep	oe
	$30 x=225+144-100$ or $30 x=269$	M1dep	oe
	$(x=) \frac{269}{30}$ or $(x=) 8.97$ or 9	A1	
	[7.9, 8]	A1ft	ft their x, dependent on M1M1M1
	Alternative method 4		
Alt 4 of 4	$10^{2}-y^{2}=12^{2}-(15-y)^{2}$	M1	oe $h^{2}=10^{2}-y^{2} \text { and } h^{2}=12^{2}-(15-y)^{2}$
	$100-y^{2}=144-\left(225-15 y-15 y+y^{2}\right)$	M1dep	oe
	$\begin{aligned} & 30 y=225+100-144 \\ & \text { or } 30 y=181 \end{aligned}$	M1dep	oe
	$(y=) \frac{181}{30}$ or $(y=) 6.03 \ldots$ or 6	A1	
	[7.9, 8]	A1ft	ft their y, dependent on M1M1M1
	Add	itional G	idance

