AQA

GCSE
 Mathematics

Paper 2 43652H
Mark scheme

43652H
June 2016

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

AQA

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a candidate has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the candidate. In cases where there is no doubt that the answer has come from incorrect working then the candidate should be penalised.

Questions which ask candidates to show working

Instructions on marking will be given but usually marks are not awarded to candidates who show no working.

Questions which do not ask candidates to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Candidates often copy values from a question incorrectly. If the examiner thinks that the candidate has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the candidate intended it to be a decimal point.

Paper 2 Higher Tier

\mathbf{Q}	Answer	Mark	Comments

1	$\frac{20}{8}$ or 2.5 seen or implied or $\frac{8}{20}$ or 0.4 seen or implied or $75+75+37.5$ or 187.5 or $50+50+25$ or 125 or $40+40+20$ or 100 or $2+2+1$ or 5	M1	oe
	Two from 187.5 or 125 or 100 or 5	A1	For 187.5 allow [187, 188] or 190
	187.5 and 125 and 100 and 5	A1	For 187.5 allow [187, 188] or 190 SC1 for [112, 113] and 75 and 60 and 3
	Additional Guidance		

Q	Answer	Mark	Comments

2(a)	$720+430 \text { or } 1150$ or 0.15×720 or 108 or 0.15×430 or $64.5(0)$	M1	$\begin{aligned} & \text { oe } \\ & 1-0.15 \text { or } 0.85 \end{aligned}$
	$\begin{aligned} & 0.15 \times \text { their } 1150 \\ & \text { or their } 108+\text { their } 64.5(0) \\ & \text { or their } 1150-1000 \\ & \text { or } 1000 \text { - their } 1150 \\ & \text { or } 150 \text { or }-150 \end{aligned}$	M1dep	oe their 0.85 and their 1150 or their 0.85×720 or 720 - their 108 or 612 or their 0.85×430 or 430 - their 64.5(0) or 365.5(0) or $1000 \div$ their 0.85 or $[1176,1177]$
	172.5 or $0.15 \times$ their 1150 and (-)150 or their $108+$ their $64.5(0)$ and $(-) 150$ or their 1150 - their 172.5(0)	M1dep	oe their $0.85 \times$ their 1150 or their 612 + their 365.5(0) or $1000 \div$ their 0.85 and their 1150
	977.5 or 977 or 978 or $172.5(0)$ and (-)150 or 22.5(0) or $-22.5(0)$	A1	[1176, 1177] and 1150
	Yes	Q1ft	Strand (iii) decision to match their answer provided all method marks are correct.
	Additional Guidance on next page		

$\begin{gathered} \text { 2(a) } \\ \text { AG } \end{gathered}$	Additional Guidance	
	Allow rounding or truncation to $£$ for $64.5,365.5,172.5,22.5$ and 977.5	
	Ignore fw after 977.5 eg $1000-977.5=32.5$ so Yes	5 marks
	15% of $1000=150$, so 15% of $1150>150$ so when you subtract the final cost will be <1000	5 marks
	$0.15 \times 1150=172.5,172.5$ without $(-) 150$ cannot score the Q mark as they have nothing to compare the 172.5 with	M1M1M1
	Beware: $0.15 \times 1000=150$ with no correct working	M0

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

2(b)	800×1.25 or 1000	M1	oe	
	their 1000-895 or 105	M1dep		
	their $105 \div 1.4(0)$	M1dep	oe	
	75	A1	SC2 for 84 or 160.(71...) or 161 SC1 for 639.(28...) or 639.29 or 640	
	Additional Guidance			
	84 implies $105 \div 1.25$ or 895 Euros to pounds and subtracting from $£ 800$			
	160.(71...) implies 800×1.4			
	$\begin{aligned} & 895 \div 1.25=716 \\ & 800-716=84 \\ & 84 \times 1.25 \div 1.4=75 \end{aligned}$			4 marks
	$\begin{aligned} & 895 \div 1.25=716 \\ & 800-716=84 \\ & 84 \div 1.4=60 \end{aligned}$			SC2

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

3	$\frac{9}{5} \times 28$ or 50.4		M1	oe	
	82.4 or $82 \frac{2}{5}$ or 82 remainder 2		A1	oe	
	82		B1ft	ft their answer provided not an integer	
	Additional Guidance				
	82 on its own				M1A1B1
	$\frac{9}{5} \times 28+32$ on its own				M1
	$\frac{9}{5}$ of $28+32$ on its own				M0
	$\begin{array}{ll} \frac{9}{5} \times 28+32 & \\ =\frac{9}{5} \times 60 & \text { (incorrect order of operations) } \\ =108 & \text { (no ft as not from a decimal answer) } \end{array}$				MOA0B0

4(a)	4, 2 and 0	B2	B1 for $4,2, x$ or $4, x, x-2$ or $4, x, 0$ or $x, x-2, x-4$ or $x, 2,0$ or $0,2,4$ eg $4,2,1$ $4,3,1$ $4,3,0$ $6,4,2$ $6,2,0$

Q	Answer	Mark	Comments

Alternative method 1		M1
$(31+3) \div 2$ or 17	oe $2 \times 17-3(=31)$	
(their $17+3) \div 2$	M1dep	oe $2 \times 10-3(=17)$
10	A1	Ignore fw continuing the sequence SC1 for 12.25

Alternative method 2

Inputs a number for first term and evaluates third term correctly.	M1	eg First term $=1$ implies third term $=-5$ First term $=2$ implies third term $=-1$ First term $=3$ implies third term $=3$ First term $=4$ implies third term $=7$ First term $=5$ implies third term $=11$ First term $=6$ implies third term $=15$ First term $=7$ implies third term $=19$ First term $=8$ implies third term $=23$ First term $=9$ implies third term $=27$ First term $=9.5$ implies third term $=29$
Inputs another number for first term and evaluates third term correctly.	M1dep	
10	A1	Ignore fw continuing the sequence SC1 for 12.25

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

$\begin{gathered} \text { 4(b) } \\ \text { Alt } \\ 3 \text { of } 3 \end{gathered}$	Alternative method 3					
	$2(2 x-3)-3=31$	$2 x-3=31$ or $2 x=34$ or $x=17$		M1	oe with any variable	
	$4 x-6-3=31$ or $4 x-9=31$ or $4 x=40$	$2 x-3=\text { their } 17$ or $2 x=20$		M1dep	oe with any variable	
	10			A1	Ignore fw continuing the sequence SC1 for 12.25	
	Additional Guidance					
	$10+3=13$, answer 13 (allow as fw continuing the sequence)					M1M1A1
	$10+3=13$, answer 6.5 (allow as fw continuing the sequence)					M1M1A1
	10-3 = 7, answer $7 \quad$ (do not allow A mark as not continuing the sequence)					M1M1A0
	$\begin{aligned} & ((31+3) \div 2+3) \div 2 \\ & \text { or } \frac{31+3+6}{4} \end{aligned}$					M1M1

5(a)	$15<x \leq 25$	B1		
	Additional Guidance			

Q	Answer	Mark	Comments

Q	Answer	Mark	Comments

Additional Guidance on next page

Q	Answer	Mark	Comments

$\begin{gathered} 6 \\ \text { AG } \end{gathered}$	Additional Guidance	
	Allow decimals in a correctly evaluated trial, eg 75, 37.5, 12.5, total 125	
	6:3:1	M1
	6, 3, 1 Total = 10	M1
	6, 3, 1	M0
	$7: 2: 1=10,130 \div 10=13$	M0

7(a)	$\begin{aligned} & \pi \times 6^{2} \\ & \text { or } 3.14 \times 6^{2} \\ & \text { or }[113,113.2] \end{aligned}$	M1	May be embedded oe	
	$\begin{aligned} & \pi \times 6^{2} \times 15 \\ & \text { or } 3.14 \times 6^{2} \times 15 \\ & \text { or }[113,113.2] \times 15 \end{aligned}$	M1dep	oe	
	$\begin{aligned} & {[1695,1698] \text { or } 1700} \\ & \text { or } 540 \pi \end{aligned}$	A1	Ignore fw after 540π	
	Additional Guidance			
	$\pi \times 6^{2}=\pi \times 12 \times 15$			M1M1
	$\pi \times 6^{2} \times 15=\pi \times 12 \times 15$			M1M1
	$\pi \times 6^{2} \times 30$			M1 M0
	$2 \times \pi \times 6^{2} \times 15$			M1 M0
	$\pi \times 6^{2}=\pi \times 12$			M1 M0
	$\pi 6^{2}$			M1
	$\pi \times 12$			M0
	$\pi \times 12 \times 15$			M0

Q	Answer	Mark	Comments

Q	Answer	Mark	Comments

$\begin{gathered} 8 \\ \text { Alt } \\ 1 \text { of } 3 \\ \text { Alt } \\ 2 \text { of } 3 \end{gathered}$	Alternative method 1		
	$5 x-x \text { or } 4 x$ or $5 x+5 x-x-x$ or $8 x$	M1	oe $5 x+5 x$ or $10 x$ or $5 x+x+x$ or $7 x$
	$\begin{aligned} & 8 x \times 5 x \text { or } 40 x^{2} \\ & \text { or } x \times 5 x \text { or } 5 x^{2} \end{aligned}$	M1	oe $10 x \times 7 x$ or $70 x^{2}$ or $6 \times x \times 5 x$ or $30 x^{2}$
	$8 x \times 5 x=1440$ or their $40 x^{2}=1440$ or $x^{2}=36$	M1dep	oe $10 x \times 7 x-6 \times x \times 5 x=1440$ or their $70 x^{2}-$ their $30 x^{2}=1440$
	$(x=) 6$ or 5×36 or $\left(5 x^{2}=\right) 1440 \div 8$	M1dep	oe Must be correct
	180	A1	
	Alternative method 2		
	$5 x-x \text { or } 4 x$ or $5 x+5 x-x-x$ or $8 x$	M1	oe
	4 small rectangles fit in half white rectangle	M1	May be implied from diagram
	8 small rectangles fit in white rectangle	M1dep	May be implied from diagram
	$1440 \div 8$	M1dep	oe Must be correct
	180	A1	

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

	Alternative method 3			
$\begin{gathered} 8 \\ \text { Alt } \\ 3 \text { of } 3 \end{gathered}$	$5-1 \text { or } 4$ or $5+5-1-1$ or 8	M1	$5+5 \text { or } 10$ or $5+1+1$ or 7 May be on diagram	
	8×5 or 40	M1	oe 10×7 or 70 or $6 \times 1 \times 5$ or 30	
	$1440 \div \text { their } 40 \text { or } 36$ or $\sqrt{\text { their } 36}$	M1dep	oe	
	6	M1dep	Must be correct	
	180	A1		
	Additional Guidance			
	$x=6$ with no clearly incorrect working			M1M1M1M1
	Answer 180^{2} scores A0			M1M1M1M1
	4 small rectangles fit in half white rectangle implies $4 x$			M1M1
	Just $5 x^{2}$			M0M1

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

9	$75 \%=14625$	M1	$\begin{aligned} & \text { oe } \\ & 14625 \div 3 \text { or } 4875 \end{aligned}$	
	$\frac{14625 \times 100}{75}$ or $14625 \div 0.75$ or $14625 \div 75$ or 195	M1dep	oe 14625 + their 4875 or $4 \times$ their 4875	
	19500	A1		
	Additional Guidance			
	$14625 \times 75 \div 100$			M0

Q	Answer	Mark	Comments

10(a)	Median at 18	B1	tolerance $\pm 1 / 2$ square	
	LQ at 14	B1	tolerance $\pm 1 / 2$ square	
	UQ at 26	B1	tolerance $\pm 1 / 2$ square	
	Min at 5 and max at 30 and correct shape box including 3 lines for LQ, median and UQ	Q1	tolerance $\pm 1 / 2$ square Strand (ii) End vertical lines are not re points are clear SC1 for (median =) 18 or (LQ =) 14 or ($\mathrm{UQ}=$) 26	ired if end
	Additional Guidance			
	Note, for the SC1 (median =) 18, need to see 18, 8 circled on diagram is not enough, this also applies for the LQ and UQ values			
	Condone whisker line drawn horizontally through the box, but not along the top or along the bottom of the box			

Q	Answer	Mark	Comments

10b AG cont.	Additional Guidance - continued from previous page	
	IQR Jack scored more consistently because 12 is more than 8 Jack's IQR is smaller so Jack is more CONCISE Jack has a smaller IQR (... than Rob) Jack has a lower IQR Jack's IQR is less spread out than Rob's The spread is less (Assume referring to Jack) Jack's box is smaller so he is more consistent Jack is more consistent His scores are closer together Jack's IQR is higher Jack has a consistent score Jack's range is more consistent Jack's UQ is higher than Rob's Jack's LQ is higher than Rob's Jack's LQ is 18 whilst Rob's is 12 Median and IQR in one statement Jack is higher on average and is more consistent	B1 B1 B1 B1 B1 B1 B1 B1 B1 B0 $B 0$ $B 0$ $B 0$ $B 0$ $B 0$ $B 1 B 1$
	Additional Guidance	
	If not explicitly stated assume referring to Jack	
	Numbers quoted must be correct	
	Jack's IQR is less spread out and higher than Rob's	Allow B1
	Jack has a more consistent higher score	Allow B1
	Use of mean or mode for average	B0
	Use of range for IQR	B0

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

11	4 or 5 points plotted correctly	M1	$\pm 1 / 2$ square tolerance	
	Fully correct with a smooth curve	A1	$\pm 1 / 2$ square tolerance	
	Additional Guidance			

$\begin{gathered} 12 \\ \text { Alt } \\ 1 \text { of } 2 \end{gathered}$	Alternative method 1		
	$\begin{aligned} & 20 \times 2.5 \text { or } 50 \\ & \text { or } 30 \times 2.5 \text { or } 75 \end{aligned}$	M1	oe May be on a diagram
	$\left(\right.$ their 50) ${ }^{2}+(\text { their } 75)^{2}$ or 8125	M1dep	$\cos 56=\frac{50}{h} \text { or } \cos 34=\frac{75}{h}$ or $\sin 56=\frac{75}{h} \text { or } \sin 34=\frac{50}{h}$
	$\begin{aligned} & \sqrt{(\text { their } 50)^{2}+(\text { their } 75)^{2}} \text { or } \\ & \sqrt{8125} \end{aligned}$	M1dep	$(h=) \frac{50}{\cos 56} \text { or } \quad(h=) \frac{75}{\cos 34}$ or $(h=) \frac{75}{\sin 56} \text { or } \quad(h=) \frac{50}{\sin 34}$
	90.1(...)	A1	
	90	B1ft	ft rounding their 3sf or more answer to 2 sf SC3 for 14 SC2 for 14.4(...)

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

	Alternative method 1			
	$\begin{aligned} & 2 x+y+128=180 \\ & \text { or } x+5 y+100=180 \end{aligned}$		M1	oe
	$\begin{aligned} & 2 x+y=52 \\ & \text { and } x+5 y=80 \end{aligned}$		M1dep	oe Collecting terms
	$\begin{aligned} & 2 x+y=52 \\ & 2 x+10 y=160 \end{aligned}$	$\begin{aligned} & 10 x+5 y=260 \\ & x+5 y=80 \end{aligned}$	M1dep	oe Equating coefficients
	$x=20$ or $y=12$		A1	
$\begin{gathered} 13 \\ \text { Alt } \\ 1 \text { of } 6 \end{gathered}$	$x=20$ and $y=12$		A1	SC3 for $x=41 \frac{1}{3}$ or 41 or $41.3 \ldots$ and $y=17 \frac{1}{3}$ or 17 or $17.3 \ldots$ or $x=60$ and $y=8$ or $x=38 \frac{2}{3}$ or 39 or $38.6 \ldots$ or 38.7 and $y=2 \frac{2}{3}$ or 3 or $2.6 \ldots$ or 2.7

	Alternative method 2			
	$\begin{aligned} & 2 x+y+128=180 \\ & \text { or } 2 x+y+x+5 y+128+100=360 \end{aligned}$		M1	oe
	$\begin{aligned} & 2 x+y=52 \\ & \text { and } 3 x+6 y=132 \end{aligned}$		M1dep	oe Collecting terms
	$\begin{aligned} & 6 x+3 y=156 \\ & 6 x+12 y=264 \end{aligned}$	$\begin{aligned} & 12 x+6 y=312 \\ & 3 x+6 y=132 \end{aligned}$	M1dep	oe Equating coefficients
	$x=20$ or $y=12$		A1	
$\begin{gathered} 13 \\ \text { Alt } \\ 2 \text { of } 6 \end{gathered}$	$x=20$ and $y=12$		A1	SC3 for $x=41 \frac{1}{3}$ or 41 or $41.3 .$. . and $y=17 \frac{1}{3}$ or 17 or $17.3 \ldots$ or $x=60$ and $y=8$ or $x=38 \frac{2}{3}$ or 39 or $38.6 \ldots$ or 38.7 and $y=2 \frac{2}{3}$ or 3 or $2.6 \ldots$ or 2.7

	Alternative method 3			
	$x+5 y+100=180$ or $2 x+y+x+5 y+128+100=360$		M1	oe
	$\begin{aligned} & x+5 y=80 \\ & \text { and } 3 x+6 y=132 \end{aligned}$		M1dep	oe Collecting terms
	$\begin{aligned} & 3 x+15 y=240 \\ & 3 x+6 y=132 \end{aligned}$	$\begin{aligned} & 6 x+30 y=480 \\ & 15 x+30 y=660 \end{aligned}$	M1dep	oe Equating coefficients
	$x=20$ or $y=12$		A1	
$\begin{gathered} 13 \\ \text { Alt } \\ 3 \text { of } 6 \end{gathered}$	$x=20$ and $y=12$		A1	SC3 for $x=41 \frac{1}{3}$ or 41 or $41.3 \ldots$ and $y=17 \frac{1}{3}$ or 17 or $17.3 \ldots$ or $x=60$ and $y=8$ or $x=38 \frac{2}{3}$ or 39 or $38.6 \ldots$ or 38.7 and $y=2 \frac{2}{3}$ or 3 or $2.6 \ldots$ or 2.7

$\begin{gathered} 13 \\ \text { Alt } \\ 4 \text { of } 6 \end{gathered}$	Alternative method 4			
	$2 x+y+128=x+5 y+100$ or $2 x+y+128=180$ or $x+5 y+100=180$		M1	oe
	$-x+4 y=28$ and $2 x+y=52 \text { or } x+5 y=80$		M1dep	oe Collecting terms
	$\begin{aligned} & -2 x+8 y=56 \\ & 2 x+y=52 \\ & -x+4 y=28 \\ & 8 x+4 y=208 \end{aligned}$	$\begin{aligned} & -x+4 y=28 \\ & x+5 y=80 \\ & -5 x+20 y=140 \\ & 4 x+20 y=320 \end{aligned}$	M1dep	oe Equating coefficients
	$x=20$ or $y=12$		A1	
	$x=20$ and $y=12$		A1	SC3 for $x=41 \frac{1}{3}$ or 41 or $41.3 \ldots$ and $y=17 \frac{1}{3}$ or 17 or $17.3 \ldots$ or $x=60$ and $y=8$ or $x=38 \frac{2}{3}$ or 39 or $38.6 \ldots$ or 38.7 and $y=2 \frac{2}{3}$ or 3 or $2.6 \ldots$ or 2.7

	Alternative method 5			
	$\begin{aligned} & 2 x+y+128=x+5 y+100 \\ & \text { or } 2 x+y+x+5 y+128+100=360 \end{aligned}$		M1	
	$\begin{aligned} & -x+4 y=28 \\ & \text { and } 3 x+6 y=132 \end{aligned}$		M1dep	oe Collecting terms
	$\begin{aligned} & -3 x+12 y=84 \\ & 3 x+6 y=132 \end{aligned}$	$\begin{aligned} & -3 x+12 y=84 \\ & 6 x+12 y=264 \end{aligned}$	M1dep	oe Equating coefficients
	$x=20$ or $y=12$		A1	
$\begin{gathered} 13 \\ \text { Alt } \\ 5 \text { of } 6 \end{gathered}$	$x=20$ and $y=12$		A1	SC3 for $x=41 \frac{1}{3}$ or 41 or $41.3 \ldots$ and $y=17 \frac{1}{3}$ or 17 or $17.3 \ldots$ or $x=60$ and $y=8$ or $x=38 \frac{2}{3}$ or 39 or $38.6 \ldots$ or 38.7 and $y=2 \frac{2}{3}$ or 3 or $2.6 \ldots$ or 2.7

	Alternative method 6 Substitution				
	$\begin{aligned} & 2 x+y+128=180 \\ & \text { or } x+5 y+100=180 \end{aligned}$		M1	oe	
	$y=52-2 x$ or $y=\frac{80-x}{5}$	$\begin{aligned} & x=\frac{52-y}{2} \\ & \text { or } x=80-5 y \end{aligned}$	M1dep	oe Making one variable the subject	
	$52-2 x=\frac{80-x}{5}$	$\frac{52-y}{2}=80-5 y$	M1dep	oe Eliminating a variable	
	$x=20$ or $y=12$		A1		
$\begin{gathered} 13 \\ \text { Alt } \\ 6 \text { of } 6 \end{gathered}$	$x=20$ and $y=12$		A1	SC3 for $x=41 \frac{1}{3}$ or 41 or $41.3 \ldots$ and $y=17 \frac{1}{3}$ or 17 or $17.3 \ldots$ or $x=60$ and $y=8$ or $x=38 \frac{2}{3}$ or 39 or $38.6 \ldots$ or 38.7 and $y=2 \frac{2}{3}$ or 3 or $2.6 \ldots$ or 2.7	
	Additional Guidance				
	Note $x=20$ and $y=12$ using trial and improvement or without working				5 marks
	$x+2 y=44$ may be used for $3 x+6 y=132$ when equating coefficients				
	For SC3 accept fractions written as decimals to 1dp or better				
	Alternative method 6 is one example of the principles of marking for the				

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

14	$y=5 x+4$	B2	oe B1 for $y=m x+4$ or $y=5 x+c, c \neq 3$ or $5 x+4$	
	Additional Guidance			
	$y=5 x$			B1
	$y=4$			B1
	$y=5 x-3$			B1
	$y=5 x+3$			B0
	$5 x+1$			B0

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

15	Alternative Method 1		
	One correctly evaluated calculation within range for nails and one correctly evaluated calculation within range for screws	M1	eg $4 \times 200=800$ and $6 \times 140=840$ The bags do not have to all weigh the same eg $3 \times 195+200=785$ and $6 \times 140=840$
	One more correctly evaluated calculation within range for nails and one more correctly evaluated calculation within range for screws	M1dep	eg $4 \times 202=808$ and $6 \times 137=822$
	Any correctly evaluated calculation giving same answer in range 810 to 820 for both nails and screws	Q1	Strand (ii) SC1 for implying a single value $[810,820]$ works, eg (it works for) 815
	Alternative Method 2		
	195 or 205 or 135 or 145	M1	$\begin{aligned} & 800 \pm 20 \text { or } 780 \text { or } 820 \\ & \text { or } \\ & 840 \pm 30 \text { or } 810 \text { or } 870 \end{aligned}$
	$4 \times 195=780 \text { and } 4 \times 205=820$ or $6 \times 135=810 \text { and } 6 \times 145=870$	M1dep	Writes 800 ± 20 and writes 840 ± 30
	(Overlap) 810 to 820	Q1	Strand (ii) SC1 for implying a single value [810, 820] works, eg (it works for) 815
	Additio	Guidan	e on next page

$\begin{gathered} 15 \\ \text { AG } \end{gathered}$	Additional Guidance	
	Condone use of upper bounds	
	Mark best scheme	
	Beware: The bags do not have to all weigh the same, eg $3 \times 204+200=812$ and $4 \times 135+2 \times 136=812$	M1M1Q1
	$4 \times 204=816$ and $6 \times 136=816$	M1M1Q1
	$4 \times 202.5=810$ and $6 \times 135=810$	M1M1Q1
	$4 \times 205=820$ and $820 \div 6=136.6 \ldots$ or 136.7	M1M1Q1

Q	Answer	Mark	Comments

16	Angle $A B C=74$ or angle $P A B=35$	M1	May be on diagram in the correct place $180-74-35$
	71	A1	
	Additional Guidance		

17	$\frac{270}{360} \times 2 \times \pi \times 7$ or 10.5π or [32.97, 33] or $\frac{90}{360} \times 2 \times \pi \times 7$ or 3.5π or [10.99, 11]	M1	oe	
	$7+7+\frac{270}{360} \times 2 \times \pi \times 7$ or $46.9 \ldots$	M1dep	oe	
	[46.97, 47] or $10.5 \pi+14$ as final answer or $\frac{21 \pi}{2}+14$	A1	oe	
	Additional Guidance			
	46.97 with 46.9 on answer line is fw and can be ignored			M1M1A1
	$10.5 \pi+14=\frac{49 \pi}{2}$			M1M1A0
	$10.5 \pi+14=77$			M1M1A0

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

18(a)	$\frac{50}{400} \text { or } \frac{1}{8}$ or $400 \div 50$ or 8 seen or implied	M1	
	12.5 or 12 or 13 and 18.75 or 18 or 19 and 11.25 or 11 or 12 and 7.5 or 7 or 8	A1	Allow one error
	One row from $\begin{array}{llll}12 & 18 & 12 & 8\end{array}$ $\begin{array}{llll}12 & 19 & 11 & 8\end{array}$ $\begin{array}{llll}12 & 19 & 12 & 7\end{array}$ $\begin{array}{llll}13 & 18 & 11 & 8\end{array}$ $\begin{array}{llll}13 & 18 & 12 & 7\end{array}$ $\begin{array}{llll}13 & 19 & 11 & 7\end{array}$	A1	Rounded or truncated and total $=50$
	Additional Guidance		

18(b)	$\begin{aligned} & 100 \div 20 \text { or } 5 \\ & \text { or } 150 \div 15 \text { or } 10 \\ & \text { or } 90 \div 10 \text { or } 9 \\ & \text { or } 60 \div 25 \text { or } 2.4 \end{aligned}$	M1	oe May be implied from the diagram
	5 and 10 and 9 and 2.4	A1	Allow one error May be implied from the diagram
	At least one fully correct bar	B1	tolerance $\pm 1 / 2$ square
	Fully correct histogram with correct bar heights	B1	tolerance $\pm 1 / 2$ square
	Additional Guidance		

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

19	$36^{2}=14^{2}+25^{2}-2 \times 14 \times 25 \times \cos x$	M1	oe
	$\begin{aligned} & \frac{14^{2}+25^{2}-36^{2}}{2 \times 14 \times 25} \\ & \text { or } \frac{-475}{700} \text { or } \frac{-19}{28} \\ & \text { or }-0.67 \ldots \text { or }-0.68 \end{aligned}$	M1dep	oe
	[132.7, 133]	A1	SC1 for [47, 47.3]
	Additional Guidance		

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

20

$\begin{aligned} & 15 \div 12 \text { or } 1.25 \\ & \text { or } 12 \div 15 \text { or } 0.8 \end{aligned}$	M1	oe	
(their 1.25$)^{3}$ or $\frac{125}{64}$ or 1.95(3125) or (their 0.8$)^{3}$ or $\frac{64}{125}$ or 0.512	M1dep	oe	
2734.375 or 2734.(...) or 2730	A1	SC1 for 1750 or 2187.5 or 2188 with no working	
Additional Guidance			
Treats as a particular shape eg $\begin{aligned} & r^{2} \times \pi \times 12=1400 \rightarrow r=6.0939 \\ & r \times 1.25 \\ & =6.0939 \ldots \times 1.25 \\ & =7.617 \\ & 12 \times 1.25=15 \\ & 7.617^{2} \times \pi \times 15 \end{aligned}$ 2734.375 or 2734 .(...) or 2730		1.25 seen) 25^{3} implied)	M1 M1dep A1

Q	Answer	Mark	Comments

21
Alternative method 2
\(\left.$$
\begin{array}{|l|l|l|}\hline \begin{array}{l}4 \times 3 \text { or } 12 \\
\text { or } 10 \times 9 \text { or } 90\end{array} & \text { M1 } & \\
\hline \begin{array}{l}4 \times 3 \text { or } 12 \\
\text { and } 10 \times 9 \text { or } 90\end{array}
$$ \& M1dep \&

\hline \frac{12}{90} or \frac{2}{15} \& A1 \& oe

0.13 ··· or 13 .(···) \%\end{array}\right]\)| M1M1A1 |
| :--- |
| $\frac{12}{90}=\frac{1}{9}$, ignore fw |

Q	Answer	Mark	Comments

22(b)	$x(x-6)$	B1		
	$\begin{aligned} & (x-6)(2 x+5) \\ & \text { or }(x+a)(2 x+b) \end{aligned}$	M1	where $a b= \pm 30$ or $2 a+b=-7$	
	$\frac{x}{2 x+5}$	A1	Do not ignore fw	
	Additional Guidance			
	$\frac{x(x-6)}{(2 x+5)(x-6)}$			B1M1A1
	$\frac{(x-0)(x-6)}{(2 x+5)(x-6)}=\frac{(x-0)}{(2 x+5)}$			B1M1A0

\mathbf{Q}	Answer	Mark	Comments

23	$x^{2}+a x+a x+a^{2} \quad(-7)$ or $x^{2}+2 a x+a^{2} \quad(-7)$ or $2 a x=10 x$ or $2 a=10$ or $a=5$ or $a^{2}-7=b$ or $(x+5)^{2}$	M1	oe	
	$a=5$ and $b=18$	A1		
	Additional Guidance			
	$(x+5)^{2}-7=x^{2}+10 x+18$			M1A1
	$a=7$ and $b=18$			M0

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

24

$6(2 x+5)+1(x+3)$ or $3(x+3)(2 x+5)$	M1	oe May be seen as part of a fraction or fractions with denominator $(x+3)(2 x+5)$	
$6(2 x+5)+1(x+3)=3(x+3)(2 x+5)$	M1dep	oe	
$6 x^{2}+20 x+12(=0)$ or $3 x^{2}+10 x+6(=0)$	A1	Simplifying the expression to three terms	
$\begin{aligned} & \frac{-20 \pm \sqrt{20^{2}-4 \times 6 \times 12}}{2 \times 6} \\ & \text { or } \frac{-10 \pm \sqrt{10^{2}-4 \times 3 \times 6}}{2 \times 3} \end{aligned}$	M1	oe Allow one error $-2.548 \ldots \text { or }-0.784 \ldots$ Strictly ft their quadratic	
$\begin{aligned} & \frac{-20 \pm \sqrt{20^{2}-4 \times 6 \times 12}}{2 \times 6} \\ & \text { or } \frac{-10 \pm \sqrt{10^{2}-4 \times 3 \times 6}}{2 \times 3} \end{aligned}$	A1ft	oe fully correct	
-0.78 and -2.55	A1		
Additional Guidance			
One correct solution to 2 or more dp implies 4 marks Two correct solutions to more than 2 dp implies 5 marks			
$3 x^{2}+10 x=-6$			M1 M1A1
ft their quadratic for the $4^{\text {th }}$ and $5^{\text {th }}$ marks If no real roots M1A1ft can still be awarded If quadratic factorises, must see correct factors for M1 and correct solutions for A1ft If quadratic does not factorise, attempt to factorise scores M0 "Their quadratic" must be in the form $a x^{2}+b x+c(=0)$ or equivalent, no credit for solving a quadratic embedded within fractions etc			

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

$\begin{gathered} 25 \\ \text { Alt } \\ 1 \text { of } 4 \end{gathered}$	Alternative method 1		
	$8 \div 4$ or 2	B1	$4 \times 2=8$ or implies volume $=4 \times$ area of triangle
	$\begin{aligned} & \text { (Area of triangle }=\text {) } \frac{1}{2} \times x \times x \times \sin 60 \\ & \text { or } \frac{1}{2} \times x \times x \times \frac{\sqrt{3}}{2} \end{aligned}$	B1	oe
	$\frac{1}{2} \times x \times x \times \sin 60=2$ or $\frac{1}{2} \times x \times x \times \frac{\sqrt{3}}{2}=2$ or $\left(x^{2}=\right) \frac{4}{\sin 60}$ or $4.59 \ldots$ or $4.6 \ldots$ or $\left(x^{2}=\right) \frac{8}{\sqrt{3}}$ $\cos 30=\frac{h}{2.149}$ or $\sin 60=\frac{h}{2.149}$ or $2=\frac{1}{2} \times 2.149 \times h$ or $\quad h^{2}=\frac{6}{\sqrt{3}}$ or $2 \sqrt{3}$	M1	oe
	$\begin{aligned} & (h=) \quad[1.81,1.87] \\ & \text { or }(x=)[2.1,2.15] \\ & \text { or }\left(x^{2}=\right)[4.59,4.66] \end{aligned}$	A1	oe
	[1.81, 1.87] and No	A1	

Alternative method 2

$8 \div 4$ or 2	B1	$4 \times 2=8$ or implies volume $=4 \times$ area of triangle
(half the base $=) h \tan 30$	B 1	oe
$h \tan 30 \times h=2$	A 1	
$\left(h^{2}=\right) \quad[3.46,3.47]$ or $(h=) \quad[1.81,1.87]$	A 1	
$[1.81,1.87]$ and No		

Alternative method 3

$8 \div 4$ or 2	B1	$4 \times 2=8$ or implies volume $=4 \times$ area of triangle
$\begin{aligned} & \tan 60=\frac{1.95}{\text { half the base }} \\ & \text { or } \tan 30=\frac{\text { half the base }}{1.95} \end{aligned}$ or (half the base $=$) $\frac{1.95}{\tan 60}$ or (half the base) $=1.95 \times \tan 30$ or $1.125 \ldots$ or 1.13 or $\frac{13 \sqrt{3}}{20}$	B1	
their $1.125 \ldots \times 1.95$ or their $1.125 \ldots \times 1.95 \times 4$	M1	oe
(Area of triangle =) [2.19, 2.2] or (Volume of prism =) [8.7, 8.8]	A1	oe
[2.19, 2.2] and No or [8.7, 8.8] and No	A1	

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

$\begin{gathered} 25 \\ \text { Alt } \\ 4 \text { of } 4 \end{gathered}$	Alternative method 4		
	$8 \div 4$ or 2	B1	$4 \times 2=8$ or implies volume $=4 \times$ area of triangle
	$x^{2}=h^{2}+\left(\frac{x}{2}\right)^{2}$ or $h^{2}=x^{2}-\left(\frac{x}{2}\right)^{2}$ or $h^{2}=\frac{3}{4} x^{2}$ or $h=\frac{\sqrt{3}}{2} x$ or $\frac{1}{2} x h=2$	B1	oe
	$\begin{aligned} & \frac{1}{2} x \times \frac{\sqrt{3}}{2} x=2 \\ & \text { or } \frac{1}{2} \times \frac{2}{\sqrt{3}} h \times h=2 \end{aligned}$ or $h^{2}=\frac{8}{\sqrt{3}}-\frac{2}{\sqrt{3}}$ or $\frac{6}{\sqrt{3}}$ or $2 \sqrt{3}$ or $h^{2}=2.149^{2}-\left(\frac{2.149}{2}\right)^{2}$	M1	oe
	$\begin{aligned} & \left(h^{2}=\right) \quad[3.46,3.47] \\ & \text { or }(h=) \quad[1.81,1.87] \end{aligned}$	A1	
	[1.81, 1.87] and No	A1	
	Additi	Guid	e on next page

$\begin{gathered} 25 \\ A G \end{gathered}$	Additional Guidance	
	Throughout mark scheme: x represents the length of one side of the triangle h represents the perpendicular height of the triangle The principle of this mark scheme is as follows Fact Different correct fact Any correct equation set up involving only one variable (need not be simplified) Any answer in range An answer in range giving the full solution with the correct conclusion	B1 B1 M1 A1 A1
	$\frac{1}{2} a b \sin C=2 \quad$ (given on the formula sheet)	B1B0

