AQA Qualifications
GCSE
Mathematics (linear)
4365/2F
Mark scheme

4365
November 2014

Version 1.0: Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

M Method marks are awarded for a correct method which could lead to a correct answer.

A

B

Q
M dep

B dep A mark that can only be awarded if a previous independent mark has been awarded.
ft

SC
oe
$[a, b] \quad$ Accept values between a and b inclusive.
$[a, b)$
25.3...

Accept values $a \leq$ value $<b$
Allow answers which begin 25.3 e.g. 25.3, 25.31, 25.378 .
Use of brackets It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods
Whenever there is doubt as to whether a candidate has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the candidate. In cases where there is no doubt that the answer has come from incorrect working then the candidate should be penalised.

Questions which ask candidates to show working

Instructions on marking will be given but usually marks are not awarded to candidates who show no working.

Questions which do not ask candidates to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Candidates often copy values from a question incorrectly. If the examiner thinks that the candidate has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Paper 2 Foundation Tier

\mathbf{Q}	Answer	Mark	Comments

1(a)	6	B1	
$\mathbf{1 (b)}$ Subtract 5 B1 oe Accept $-5 n+36$			

Q	Additional Guidance	Mark
1(b)	number -5	B1
	$n-5$	
	Going down in 5s	B1
	Take 5	B1
	The first number -5	B1
	$n=-5$	B0
	$-5 n$	B0
	B0	

$\mathbf{1}(\mathrm{c})$	-4	B 1	

Q	Additional Guidance	Mark
$\mathbf{1 (c)}$	negative 4	B1
	minus 4	B1

1(d)	True False False	B3	B1 each

Q Answer	Mark	Comments		
2(a) (£) 3.74 B1			$>=$	
:---				

Q	Additional Guidance	Mark
2(a)	$£ 3.74 \mathrm{p}$	B1
	3.74 p	B1
	374 p with $£$ sign crossed out	B1
	374 p without $£$ sign crossed out	B0

2(b)	$1.99+1.7+0.55$ or 4.24	M1	oe Allow one error
	$5-$ their 4.24 or 0.76	M1dep	oe
	76	A1	$£ 0.76$

\mathbf{Q}	Additional Guidance	Mark
2(b)	Allow a mixture of units for the M marks $76 p$ seen in working, 0.76 on answer line	

3(a)	$(3,5)$	B1	
3(b)	$(1,3),(3,3)$ and $(5,3)$	B3	In any order B1 for each

Q	Answer	Mark	Comments
4	Fully correct bar chart with equal gaps	B4	Bar drawn at height of 10 for bus Bar drawn at height of 7 for car Bars drawn at 2 for Train and 1 for Walk (train = twice walk is the condition) Total $=20$ B3 for correct bar chart but no or unequal gaps or for 3 conditions met B2 for 2 conditions met B1 for 1 condition met

Q	Additional Guidance	Mark
$\mathbf{4}$	Fully correct bar chart has equal width bars, equal width gaps and four correct heights Accept if students relabel their scale, otherwise follow the mark scheme The four conditions are: 1. Height 10 for bus 2. Height 7 for car 3. Train height twice as high as walk height 4. Total 20	

$\mathbf{5 (a)}$	Shades 12 squares	B1	

Q	Additional Guidance	Mark
$\mathbf{5 (a)}$	Mark intention, positive marking	

Q	Answer	Mark	Comments
5(b)	Identifies $\frac{2}{5}$ and $\frac{8}{20}$	B2	B1 for one correct or one correct and one incorrect or two correct and one incorrect
6(a)	84	B1	
6(b)	$\begin{aligned} & 2 \times 37 \text { or } 74 \\ & \text { or } 5 \times 37 \text { or } 185 \\ & \text { or } 10 \times 37 \\ & \text { or } 74 \times 5 \end{aligned}$	M1	oe
	370	A1	SC1 for 518

Q	Additional Guidance	Mark
$\mathbf{6 (b)}$	370 seen in working, 518 on answer line - choice	SC1
	$37 \times 3=111,111 \times 5=555$	M0A0

$7(a)$	25.11	B1	

7(b)	23585	B1	

7(c)	$15.0665(\ldots)$	B1	

Q	Additional Guidance	Mark
7(c)	Ignore any digits after the 4 ${ }^{\text {th }}$ decimal place	

7(d)	15.1	B1ft	ft correct rounding to 1 dp

Q	Additional Guidance	Mark
7(d)	7c must have at least 2 decimal places Answer to part d is follow through or correct answer (may be a restart)	

Q	Answer	Mark	Comments
8(a)	Valid reason	Q1	Strand (ii) eg $14 \div 4$ is not a whole number 14 is not a multiple of 4 Because you need half centimetres Half the perimeter has to be even $\begin{aligned} & 14 \div 4=3.5 \\ & 4 \times 3=12 \text { and } 4 \times 4=16 \end{aligned}$

Q	Additional Guidance	Mark
8(a)	Because it wouldn't have the sides as a whole number	Q1
	14 doesn't divide into a whole number	Q0
	Not possible because all the sides must be equal	Q0
	Nothing divides into 144 times (not true)	Q0
	Not possible to make 14 using the same number 4 times	Q0
	$14 \div 4$ without an answer or correct comment	Q0
	The grid is not big enough	Q0
	The square would not have equal sides	Q0

| 8(b) | Valid reason | Strand (ii)
 eg 12 is not a square number |
| :--- | :--- | :--- | :--- |
| $\sqrt{12}$ is not a whole number | | |
| $3 \times 3=9$ and $4 \times 4=16$ | | |
| $\sqrt{12}=3.4 \ldots$ or 3.5 | | |

Q	Additional Guidance	Mark
8(b)	No number multiplied by itself equals 12	Q1
	No whole number multiplied by itself equals 12	Q1
	If it was a square it would have to be an area of 16 (not true)	Q0
	The length and width would not match each other	Q0
	It wouldn't have equal sides	Q0
	The base can't be timesed by the height to give 12 because the sides need to be equal	Q0
	Because 12 as an area would mean sides would be different lengths which would make the shape a rectangle not a square	Q0

Q	Additional Guidance	Mark
$\mathbf{8 (c)}$	CANDIDATES MUST USE A DIFFERENT SHAPE TO THOSE GIVEN TO SCORE ANY MARKS Accept any rotation or reflection of shape shown in mark scheme If candidates do more than one, mark all and award the lowest mark	

\mathbf{Q}	Answer	Mark	Comments

| 9
 cont. $4.17 \div 1.38$ and $6 \div 2$ M1 $1.38 \div 4.17$ and $2 \div 6$
 3.02 and 3 A1 $0.330 \ldots$ or 0.331 and $0.333 \ldots$
 2 pack identified Q1ft Strand (iii)
 ft their values provided method mark has
 been awarded | |
| :---: | :--- | :---: | :--- |

Q	Additional Guidance	Mark
9	Ignore any units throughout, e.g. 0.69 p and 0.695 p Students can scale up to any multiple of 6 , e.g. 12, 18, 24 , etc. Scale up to 18: 1.38×9 and 4.17×3 12.42 and 12.51 2 pack identified Scale up to 24: 1.38×12 and 4.17×4 16.56 and 16.68 2 pack identified Alternative method 6: $1.38 \times 2=2.76$ and $4.17-2.76$ 1.41 2 pack identified The Q mark can be awarded if the candidate has scored M1 and has made a correct comparison from their two values Pack of 2 identified with no correct working scores no marks	M1 A1 Q1 M1 A1 Q1 M1 A1 Q1

\mathbf{Q}	Answer	Mark	Comments

10	Alternative Method 1		
	$100-60 \text { or } 40$ or 40% seen	M1	$\frac{60}{100} \times 850$ or 510
	$\frac{\text { their } 40}{100} \times 850$ or 340	M1dep	850 - their 510 or 340
	$\frac{1700}{\text { their } 340}$	M1dep	
	5	A1	
	Alternative Method 2		
	$100-60 \text { or } 40$ or 40% seen	M1	1-0.6 or 0.4
	(1700 =) 200\%	M1	$1700 \div 850$ or 2
	$200 \div 40$	M1dep	their $2 \div 0.4$
	5	A1	

\mathbf{Q}	Additional Guidance	Mark
$\mathbf{1 0}$	5 with no working scores full marks	

Q		Additional Guidance	Mark	
$\mathbf{1 1}$			Ben is Darren is South-East of Emily Answer plan takes precedence over the plan at the top of the page, but this plan can be marked if the answer plan is blank Name in each box takes precedence over names written above or below unless clearly crossed out Allow abbreviated names If a name appears twice then conditions involving that person can't be met	B2

$\mathbf{1 2}$	AC		Condone AB repeated
		B2	B1 for 3 or 4 correct
	BD		

\mathbf{Q}	Additional Guidance	Mark
$\mathbf{1 2}$	AC can be written as CA, etc. Once a student starts to repeat any combination the maximum mark is B1 for 3 or 4 correct	

Q	Answer	Mark	Comments
13	5, 5 and 14 Any order	B2	Conditions are three positive numbers mode 5 median 5 range 9 B1 for 2 or 3 conditions satisfied

Q	Additional Guidance	Mark
$\mathbf{1 3}$	There are four condition to meet: 2. All three numbers must be positive 3. The median must be 5e 5 4. The range must be 9 $5,5,-4$ (satisfies three conditions but not positive) 5,5, blank (satisfies two conditions) Candidates who put more than 3 numbers score B0 Candidates who put 1 number score B0	

$\mathbf{1 4 (a)}$	$2700 \div 180$ or 15 seen	M1	oe
	Beams $=30$ or Posts $=16$	A1	
	Beams $=30$ and Posts $=16$	A1ft	ft their 15 only if M1A0 SC1 for Beams $=16$ and Posts $=30$

Q	Additional Guidance	Mark
$\mathbf{1 4 (a)}$	ft only from M1A0: ft their $15+1$ for number of posts ft their 15×2 for number of beams	

Q	Additional Guidance	Mark
14(b)	465 (mixed up the beams and the posts)	SC1

15	70×5 or 350	M1	
	their $350-(65+80+76+69)$	M1dep	their $350-290$
	60	A1	

\mathbf{Q}	Additional Guidance	Mark
$\mathbf{1 5}$	Embedded answer of 60 is 2 marks	

16	2 or 3 correct plots	$M 1$	$\pm 1 / 2$ square tolerance
	Fully correct straight ruled line from $(-3,-3)$ to $(3,9)$	A1	$\pm 1 / 2$ square tolerance

\mathbf{Q}	Additional Guidance	Mark
$\mathbf{1 6}$	2 or 3 correct points from $(-3,-3)(-2,-1)(-1,1)(0,3)(1,5)(2,7)(3,9)$ for the first M1 Ignore additional points	

17	Fully correct enlargement	B2	B1 for 2 or 3 correct sides B1 for fully correct enlargement using SF 2 or 4

Q	Answer	Mark	Comments

Alternative Method 1

5 miles $=8 \mathrm{~km}$ seen or implied	B1	oe
$95 \times$ their $\frac{5}{8}$	M1	$60 \times$ their $\frac{8}{5}$
$59 .(\ldots)$ and yes	A1	96 and yes

Alternative Method 2

95×5 or 475 or $95 \div 8$ or 11.875	B1	60×8 or 480 or $60 \div 5$ or 12
$95 \times 5 \div 8$	M1	$60 \times 8 \div 5$
$59 .(\ldots)$ and yes	A1	96 and yes

Alternative Method 3

95×5 or 475 or 60×8 or 480	B1	$95 \div 8$ or 11.875 or $60 \div 5$ or 12
95×5 or 475 and 60×8 or 480	M1	$95 \div 8$ or 11.875 and $60 \div 5$ or 12
475 and 480 and yes	A1	11.875 and 12 and yes
Alternative Method 4	B1	$60 \div 95$ or $0.63 \ldots$ or $5 \div 8$ or $0.62(5)$
$95 \div 60$ or $1.5 \ldots$ or $8 \div 5$ or 1.6	M1	$60 \div 95$ or $0.63 \ldots$ and $5 \div 8$ or $0.62(5)$
$95 \div 60$ or $1.5 \ldots$ and $8 \div 5$ or 1.6	A1	$0.63 \ldots$ and 0.625 and yes
$1.5 \ldots$ and 1.6 and yes		

\mathbf{Q}	Answer	Mark	Comments

\mathbf{Q}	Additional Guidance	Mark
$\mathbf{1 8}$	On alternative method 2 or 3, 11.875 can be 11.8(..) or 11.9 Throughout all methods students can use 2.5 and 4 in place of 5 and 8 for the first B1 (or 1.25 and 2,10 and 16, etc - might be on the scale)	

19	0.6×2.4 or 1.44 $3.12-$ their 1.44 or 1.68 3.36	M1	oe

\mathbf{Q}	Additional Guidance	Mark
$\mathbf{1 9}$	Beware of incorrect methods, e.g.	
	$£ 3.12-£ 2.40=72 p, 72 p \times 2=£ 1.44$ scores M0	

20	$11 \times 3 \text { or } 33$ or $10+10+14(.14)$ or 34 or $12+8+9$ or 29	M1	Accept $3^{\text {rd }}$ side >10
	33 and $34(.14)$ and 29 or 33 and >30 and 29	A1	oe Accept $3^{\text {rd }}$ side >10 or perimeter >30
	$\frac{1}{3}$ or 0.33...	A1ft	oe ft their 33,34 and 29

\mathbf{Q}	Additional Guidance	Mark
$\mathbf{2 0}$	Do not accept 1 in 3, 1 out of 3, untikely, etc. $\frac{1}{3}$ with no working scores no marks 3	
Accept an accurate scale drawing of the middle triangle showing that the hypotenuse is greater than 10		

$\mathbf{2 1}$	$\frac{10}{100} \times 65.5$ or 6.55	M1	oe 0.9 or 90% seen
	58.95	A1	

\mathbf{Q}	Answer	Mark	Comments

	9×9 or 81 or 9×3 or 27 or $\frac{1}{2} \times 9 \times 6$ or 27 or $\frac{1}{2} \times \frac{9}{2} \times 6$ or 13.5 or $\frac{1}{2} \times(3+9) \times \frac{9}{2}$ or 27	M1	
22	$9 \times 3+\frac{1}{2} \times 9 \times 6$ or $27+27$ or $9 \times 9-2 \times \frac{1}{2} \times \frac{9}{2} \times 6$ or $81-27$ or $2 \times \frac{1}{2} \times(3+9) \times \frac{9}{2}$$\quad$ or 2×27	M1dep	
	54	A1	

\mathbf{Q}	Additional Guidance	Mark
$\mathbf{2 2}$	Beware of 27 from wrong working, e.g. $9+3+3+6+6$ $9 \times 3=27,9 \times 6=54$ Just $9 \times 6=54$ The second M1 is for a fully correct method A fully correct method with further working loses the second M1	M1M0A0
MOM0A0		

23(a)	0.3 or $\frac{3}{10}$ or 30%	B1	oe

23(b)	0.11 or $\frac{11}{100}$ or 11%	B1	oe

Q Answer	Mark	Comments	
23(c)	200×0.15 or $\frac{30}{200}$	M1	oe
	30	A1	

Q	Additional Guidance	Mark
$\mathbf{2 3 (c)}$	$\frac{30}{200}$ (do not allow any other fractions)	M1A0
	e.g. $\frac{3}{20}$ scores M0	
	No misreads allowed	

24(a)	Appropriate key	B1	
	Stem 1, 2, 3, 4	B1	
	Leaves correct and ordered 1 3 4 5 9 0 3 5 9 1 4 7 8	B1	
	Appropriate alignment of leaves	Q1ft	St their single digit leaves Strand (ii) Consistent gaps so that row length represents the number of data it contains

Q	Answer	Mark	Comments

Q	Additional Guidance	Mark
24(a)	To award Q1ft there must be at least 2 leaves in at least 3 rows Ignore commas between numbers Ignore 0 and/or 5 on the stem for the stem mark Ignore 0 and/or 5 on the stem unless there are leaves for the third B mark If stem is 4, 3, 2, 1 then the order can be increasing or decreasing, if the stem is $1,2,3,4$ then the order should be increasing Key can be 0 / 4 to represent 4 people but not ... / 4 for example 2 digit leaves cannot score the third B1 or the Q mark	

24(b)	32	B1	

25	Alternative Method 1		
	$D=260$	B1	May be on diagram
	$A=30$	B1	May be on diagram
	$360-(30+$ their $260+$ their 30)	M1	oe
	40	A1ft	ft their 260 and 30
	Alternative Method 2		
	$S=50$ (and $R=150)$	B2	B 1 for $R=150$ May be on diagram
	$180-(90+$ their 50$)$	M1	oe
	40	A1ft	ft their 150 and 50

\mathbf{Q}	Answer	Mark	Comments

Q	Additional Guidance	Mark
$\mathbf{2 5}$	MARK THE BEST EFFORT Beware of 30, this must be linked to angle A unless clear method shown, e.g. $90-$ $60=30$ is clearly angle A Answer 40 from no working is zero marks No ft from R to S Beware of an incorrect method for finding S, e.g. $R=160$ and $S=50$ scores B0	

$\mathbf{2 6 (a)}$	$3 a+5 b+3 a+5 b$	M1	oe
	$6 a+10 b$ or $2(3 a+5 b)$	A1	oe \quad do not ignore fw for final mark

\mathbf{Q}	Additional Guidance	Mark
$\mathbf{2 6 (a)}$	$3 a+5 b \times 2=6 a+10 b$ (recovered)	M1A1
	$3 a+5 b \times 2$	M1A0
	$(3 a+5 b) 2$	M1A0
	$6 a 10 b$	
$3 a \times 2+5 b \times 2$	M1A0	
	$3 a \times 25 b \times 2$	M1A0
	M0A0	

\mathbf{Q}	Answer	Mark	Comments

		B2	B1 for $3 a \times 5 b$ B1 for partially simplified answer B1 for $15 \times a b$

Q	Additional Guidance	Mark
26(b)	Penalise further working, e.g. $3 \mathrm{a} \times 5 \mathrm{~b}=15 \mathrm{ab}=3(5 \mathrm{ab})$ gets B1	
	15 ba	
	A $=15 \mathrm{ab}$	B2
	A(15ab)	B2
	$15 a b \mathrm{~cm}^{2}$	B2
	A(3a $\times 5 \mathrm{~b})$	B2
	$(3 a)(5 b)$	B1
	$3 a 5 b$	
	$15(a b)$	B1
	$3(5 a b)$	B1
	ab15	B1
	$(15 a b)^{2}$	B1
	$15 a b^{2}$	B1
	$(3 a \times 5 b)^{2}$	B0
	$3 a \times 5 b^{2}$	B0
		B0

26(c)	$315 \div 15$ or 21 seen	M1	
	7 and 3 in any order	A1	SC1 for 15 and 21 or 9 and 35

Q	Additional Guidance	Mark
$\mathbf{2 6 (c)}$	1 and 21 on the answer line	M1A0

Q	Answer	Mark	Comments
27	$\begin{aligned} & \frac{4860}{5+4+3} \text { or } 405 \\ & \text { or } \frac{5}{12} \text { or } \frac{4}{12} \text { or } \frac{3}{12} \end{aligned}$	M1	
	2025 or 1620 or 1215	A1	
	2025 and 1620 and 1215	A1	Must be in correct order

Q	Additional Guidance	Mark
$\mathbf{2 7}$	ANSWERS MUST BE IN THE CORRECT ORDER BEWARE: $4860 / 5=972,4860 / 4=1215,4860 / 3=1620$ which gives two correct answers in the wrong order, so answers must be from correct working (972 flags up an incorrect method)	MOAOAO

$\mathbf{2 8 (a)}$	$5 x<6+2$ or $5 x<8$	M1	$\frac{8}{5}$ or 1.6 seen oe
	$x<\frac{8}{5}$	A1	oe

Q	Additional Guidance	Mark
$\mathbf{2 8 (a)}$	Sight of 1.6 or $\frac{8}{5}$ score M1	

			B1 for one extra or one missing eg
28(b)	B2 $2,3,4,5,5$ $1,2,3,4,5,6$ $2,3,4,5,6,7$ $2,3,5,6$		

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

$\mathbf{2 9 (a)}$	$\pi \times 15^{2}$ or [706, 707]	M 1	oe
	$\pi \times 15^{2} \times 50$ or $[706,707] \times 50$	M1dep	oe Accept $[35300,35325)$
	$[35325,35350]$	A 1	11250π

Q	Additional Guidance	Mark
29(a)	Sight of $\pi \times 15^{2}$ anywhere in the working is at least M1, e.g. $2 \times \pi \times 15 \times 15=1413.7$ scores 1 mark If a student gives the answer 11250π and then works this out then they must work it out correctly for the final A mark, e.g. $11250 \pi=35342.9$ scores full marks but $11250 \pi=33750$ scores two marks	M1M0A0

Q	Answer	Mark	Comments

29(b)	Alternative method 1		
	$33000 \div 1000$ or 33	M1	$\begin{aligned} & \text { oe } \\ & 0.22 \times 1000 \text { or } 220 \end{aligned}$
	their $33 \div 0.22$ or 150	M1	$\begin{aligned} & \text { oe } \\ & 33000 \div \text { their } 220 \end{aligned}$
	their $150 \div 60$	M1	oe
	2.5	A1	
	Alternative method 2		
	0.22×60 or 13.2	M1	0.22×60 or 13.2
	their 13.2×1000 or 13200	M1	$33000 \div 1000$ or 33
	$33000 \div 13200$	M1	$33 \div 13.2$
	2.5	A1	
	Alternative method 3		
	0.22×1000 or 220	M1	
	their 220×60 or 13200	M1	
	$33000 \div 13200$	M1	
	2.5	A1	

Q	Additional Guidance	Mark
$\mathbf{2 9 (b)}$	The three M marks can be done in any order	
	Alternative method:	
	$33000 \div 0.22$ or 150000	M1
	$150000 \div 1000$ or 150	M1
	$150 \div 60$	A1
	2.5	M0M0M0
	An initial step of 33000×0.22 or 7260 cannot score any marks	A0

