GCSE
 Mathematics

43651H Paper 1
Mark scheme

4365
November 2016

Version/Stage: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

M	Method marks are awarded for a correct method which could lead to a correct answer.
A	Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.
B	Marks awarded independent of method.
ft	Follow through marks. Marks awarded for correct working following a mistake in an earlier step.
SC	Special case. Marks awarded for a common misinterpretation which has some mathematical worth.
M dep method mark dependent on a previous method mark being	
awarded.	

$3.14 \ldots \quad$ Accept answers which begin 3.14 e.g. 3.14, 3.142, 3.1416

Q Marks awarded for quality of written communication

Use of brackets It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a candidate has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the candidate. In cases where there is no doubt that the answer has come from incorrect working then the candidate should be penalised.

Questions which ask candidates to show working

Instructions on marking will be given but usually marks are not awarded to candidates who show no working.

Questions which do not ask candidates to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Candidates often copy values from a question incorrectly. If the examiner thinks that the candidate has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Paper 1 Higher Tier

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

3a	$[2.3,2.5]$	B1	Ignore $x=$

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

Alternative method 1			
A triangle drawn on graph or a y and corresponding x length clearly shown ir stated.	M1		
their y length \div their x length	M1dep	Allow lengths to be $\pm 1 / 2$ small square ie ± 0.2 vertically or ± 0.1 horizontally	
5	A1	Only award if y length $\div x$ length $=5$ and does not round to 5 Accept $y=5 x-4$	
Alternative method 2	M1		
Substitutes a coordinate value into $y=m x+c, ~ e g ~(2, ~ 6) ~$			
Shows a correct equation, eg $6=2 m-4$	M1dep		
5	A1	Accept $y=5 x-4$	

Additional Guidance continues on next page

\mathbf{Q}	Answer	Mark	Comments

4	$6 x-18-4 x+20$	M1	Three correct terms	
	$6 x-18-4 x+20$	A1	All terms correct	
	$2 x+2$ or $2(x+1)$	A1ft	ft on M and no furth Do not award if inco eg $2 x+2=4 x$	r work,
	Additional Guidance			
	$\begin{aligned} & 6 x-18-4 x-20 \\ & 2 x-38 \end{aligned}$			M1, A0 A1ft
	$\begin{aligned} & 5 x-18-4 x+20 \\ & x+2 \end{aligned}$			M1, A0 A1ft
	$\begin{aligned} & 5 x-18-4 x-20 \\ & x-38 \end{aligned}$			MO, AO AOft

\mathbf{Q}	Answer	Mark	Comments

	Frequency polygon or histogram with equal intervals or cumulative frequency diagram.					B1	
	Vertical axis with equal scales labelled frequency					B1	
	Horizontal axis clearly numbered and labelled height (units not necessary), may start at 5 with zig-zag on axis.					B1	
	Additional Guidance						
	The diagram must be an attempt at one of the following. Marks cannot be scored for labels only. If diagram not valid then B0 total.						
5						B3	Accept f for frequency Accept height or h for horizontal axis cm need not be stated
						Omissions that lose a mark.	
						Histogram Heights out by more than $1 / 2$ square Missing bars Gaps between bars	
						Vertical axis No label Wrong scales	
						Horizontal axis No label Wrong scales, eg $5<h \leq 10$ Starting height at 5 with no 'zig-zag' or other indication	

Additional Guidance continues on nest page

Q	Answer	Mark	Comments

			Accept f for frequency Accept height or h for horizontal axis cm need not be stated. Ignore any lines before and after first and last points.
	W.		Omissions that lose a mark
		B3	Frequency diagram Points out by more than $1 / 2$ square Missing or wrong points Plotting at ucb or Icb No lines joining points
			Vertical axis No label Wrong scales
	Heignt		Horizontal axis No label Wrong scales, eg $5<h \leq 10$ Starting height at 5 with no 'zig-zag' or other indication

			Accept height or h for horizontal axis cm need not be stated. Ignore any lines before first point $(10,4)$
	${ }^{32}$ \# ${ }^{\text {a }}$		Omissions that lose a mark
		B3	Cumulative frequency diagram No lines or smooth curve joining points Points out by more than $1 / 2$ square Plotting at midpoint or Icb Missing or wrong points
			Vertical axis No label. Must mark c f minimum Wrong scales
			Horizontal axis No label Wrong scales, eg $5<h \leq 10$ Starting height at 5 with no 'zig-zag' or other indication

\mathbf{Q}	Answer	Mark	Comments

\mathbf{Q}	Answer	Mark	Comments

Alternative method 1

$B C D=105$	B1	
DCE $=180$ - their 105 or 75	M1	Calculation must be shown or correct angle marked on diagram
$C D E=180-($ their $75+30)$ or 75	M1dep	Calculation must be shown or correct angle marked on diagram
$D C E=75$ and $C D E=75$ and 'two angles equal'	Q1	Strand (ii) Must score B1M2 and have no incorrect angles or calculations seen
Additional Guidance		
$\begin{aligned} & C=105 \\ & C=180-105=65 \\ & D=180-(65+30)=85 \end{aligned}$		B1 M1 M1dep Q0
$\begin{aligned} & B C D=75 \\ & D C E=180-75=105 \\ & C D E=180-(105+30)=45 \end{aligned}$		B0 M1 M1dep Q0
$\begin{aligned} & B C D=105 \\ & D C E=65 \\ & C D E=85 \text { (no method shown) } \end{aligned}$		B1 M0 MOdep Q0

Alternative methods continued on the next page

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

Alternative method 2

$A B C=180-105$ or 75 or $A D C=180-105=75$	M1	Calculation must be shown or correct angle marked on diagram
$D C E=$ their 75	M1dep	their 75 must be the same as their $A B C$ or their $A D C$
$C D E=180-$ (their $75+30$) or 75	M1dep	Calculation must be shown or correct angle marked on diagram
$D C E=75$ and $C D E=75$ and 'two angles equal'	Q1	Strand (ii) Must score M3 and have no incorrect angles or calculations seen

7 cont

Additional Guidance	
$B=180-105=75$	M1
$C=105$	M0dep
$D=180-(105+30)=45$	M0dep
	Q0
$A B C($ or $A D C)=180-105=65$	M1
$D C E=65$	M1dep
$C D E=85($ no method shown $)$	M0dep
	Q0
$A B C$ (or $A D C)=180-105=75$ $D C E=75$ $C D E=180-(75+30)=65$ M1 M1dep M1dep Q0	

Alternative methods continued on the next page

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

Alternative method 3

$B C D=105$	B1	
$C D E=$ their $105-30$ or 75	M1	Calculation must be shown or correct angle marked on diagram
$D C E=180-$ (their $75+30$) or 75	M1dep	Calculation must be shown or correct angle marked on diagram
$D C E=75$ and $C D E=75$ and 'two angles equal'	Q1	Strand (ii) Must score B1M2 and have no incorrect angles or calculations seen

	Additional Guidance	
	$C=105$ $D=105-30=65$ $C=180-(65+30)=85$	B1 M1 M1dep Q0
	$B C D=75$ $C D E=75-30=45$ $D C E=180-(45+30)=105$	B0 M1 M1dep Q0
	$B C D=105$ $C D E=65$ $D C E=85$ (no method shown)	B1 M0 MOdep Q0

Alternative methods continued on the next page

Q	Answer	Mark	Comments

Alternative method 4		
$D C E$ or $C D E=(180-30) \div 2$ or 75	M1	Calculation must be shown or one correct angle marked on diagram
$C D E$ and $D C E=$ their 75	M1dep	
$D C B=180-$ their 75 or 105	M1dep	Calculation must be shown or correct angle marked on diagram
$D C E=75$ and $C D E=75$ and $D C B=$ 105 and 'opposite angles of parallelogram equal'	Q1	Strand (ii) Must score M3 and have no incorrect angles or calculations seen
	Additional Guidance	
$180-30) \div 2=65$ $C=65$ and $D=65$ $C=115($ no method shown $)$	M1 M1dep M0dep Q0	
$180-30) \div 2=75$ $D C E=75$ and $C D E=75$ $D C B=180-75=105$	M1 M1dep	
M1dep		

Q	Answer	Mark	Comments

$\mathbf{9}$			oe B1 for $6 n$ Accept $6 \times n$ or $n \times 6$ but not $n 6$ B1 for $n 6+3$ Accept any letter
$\mathbf{1 0}$	$(x-10)(x+10)$ or $(x+10)(x-10)$	B1	

Q Answer	Mark	Comments	
11a	1.6×10^{11}	B2	B1 for 2 000000×80000 B1 for 160000000000 B1 for 16×10^{10}
11b	25	B2	B1 $2000000 \div 80000$ or 200 $\div 8$ B1 2.5×10 B1 0.25×10^{2} B1 for $\frac{2}{8} \times 10^{2}$

12	Alternative method 1		
	$2(2 x+3)+(4 x-1)$	M1	oe one sign or arithmetic error if expanded straight away
	$8 x+5$	A1	
	their $(8 x+5)=20$	M1	oe Not dependent but their $8 x+5$ must be linear
	$\frac{15}{8}$	A1ft	oe ft on $1^{\text {st }}$ and $2^{\text {nd }} \mathrm{M}$ and one error. Decimals must be to at least 2dp, eg 1.875 or $1.88,1.9$ is A0
	Alternative method		
	$2 x+3+2 x-\frac{1}{2}$	M1	3 terms correct
	$4 x+2 \frac{1}{2}$	A1	
	their $\left(4 x+2 \frac{1}{2}\right)=10$	M1	oe Not dependent but their $4 x+2 \frac{1}{2}$ must be linear
	$\frac{15}{8}$	A1ft	oe ft on $1^{\text {st }}$ and $2^{\text {nd }} \mathrm{M}$ and one error.

Alternative method continues on next page

\mathbf{Q}	Answer	Mark	Comments

$\begin{gathered} 12 \\ \text { cont } \end{gathered}$	Alternative method 3			
	$\frac{4 x-1}{2}=10-3-2 x$	M1		
	$4 x-1=14-4 x$	M1		
	$8 x=15$	A1		
	$\frac{15}{8}$	A1ft	oe ft on 1 SC1 Answ	
		tional	uidance	
	$\begin{aligned} & 2(2 x+3)+4 x-1 \\ & 4 x+3+4 x-1 \\ & 8 x+2=20 \\ & 2 \frac{1}{4} \end{aligned}$		1 error	$\begin{gathered} \text { M1 } \\ \text { A0 } \\ \text { M1 } \\ \text { A1ft } \end{gathered}$
	$\begin{aligned} & 2(2 x+3)+4 x-1 \\ & 4 x+3+4 x-1 \\ & 8 x+2=20 \\ & 2.75 \end{aligned}$		2 errors	$\begin{gathered} \text { M1 } \\ \text { A0 } \\ \text { M1 } \\ \text { A0ft } \end{gathered}$
	$\begin{aligned} & 2(2 x+3)+4 x-1 \\ & 8 x+5 \\ & 8 x+5=10 \\ & \frac{5}{8} \end{aligned}$			$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M0 } \\ & \text { A0 } \end{aligned}$
	$\begin{aligned} & 2(2 x+3)+4 x-1 \\ & 2 x+6+4 x-1 \\ & 6 x+5=10 \\ & \frac{5}{6} \end{aligned}$			$\begin{aligned} & \text { M1 } \\ & \text { A0 } \\ & \text { M0 } \\ & \text { A0 } \end{aligned}$
	$\begin{aligned} & 2 x+3+2 x-\frac{1}{2} \\ & 4 x+3 \frac{1}{2}=10 \\ & \frac{13}{8} \end{aligned}$		1 error	$\begin{aligned} & \text { M1 } \\ & \text { A0 } \\ & \text { M1 } \\ & \text { A1ft } \end{aligned}$

Additional Guidance continues on next page

	Alternative method 1		
13	Proportion/percentage fish in lake $=$ $\frac{3}{60} \text { or } 5 \%$	M1	Could be shown as ratio
	$\begin{aligned} & 400=5 \% \\ & \text { or } \frac{5}{100} \times 8000 \\ & \text { or their } 5 \% \text { of } 8000 \end{aligned}$	M1dep	oe
	$\begin{aligned} & 100 \%=400 \times 20(=8000) \\ & \text { or } 400 \end{aligned}$	A1	Calculation of 400 must be clearly shown
	Alternative method 2		
	Proportion/percentage fish in lake $=$ $\frac{400}{8000} \text { or } 5 \%$	M1	Could be shown as ratio
	$\frac{5}{100} \times 60$ or their 5% of 60	M1dep	$\frac{3}{60} \text { oe }$
	3	A1	Both 5\%

Alternative method continues on next page

Q	Answer	Mark	Comments

Alternative method 3		
$400 \div 3$ or $8000 \div 60$	M1	
$8000 \div 60$ and $400 \div 3$	M1dep	
Both $133.333 \ldots$	A1	Must show equivalence clearly

Alternative method 4

$8000 \div 400$ or $60 \div 3$	M1	
$60 \div 3$ and $8000 \div 40$	M1dep	
Both equal 20	A1	Must show $8000 \div 400=20$ clearly

Additional Guidance

$400 \div 3=133.3333$	
$8000 \div 60=800 \div 6=400 \div 3=133.333$	M1 M1dep A1
$400 \div 3=133.3333$	
$8000 \div 60=133.333$	M1 M1dep A0
$3 \div 60=1 \div 20=0.2$ $0.2 \times 8000=400$	M1 M1dep A0
$3 \div 60=0.05$ $0.05 \times 8000=400$ She is correct	M1 M1dep A0
$3 \div 60=0.05$ $0.05 \times 8000=0.5 \times 800=5 \times 80=400$ She is correct	M1 M1dep A1
$60 \div 3=20$ $8000 \div 400=80 \div 4=20$	M1 M1dep A1
$60 \div 3=20$ $8000 \div 400=20$	M1 M1dep A0
$3: 60=1: 20=2: 40=4: 80=400: 8000$	M1 M1dep A1
$400 \times 60=\frac{84000}{Z 2}=8000$	M1 M1dep A1
3	

\mathbf{Q}	Answer	Mark	Comments

14	(Number of girls $=$) $\frac{360}{36} \times 5$ or 50	M1	oe Check diagram for working
	Blue eyed girls $=3 \times 5$ or $\frac{108}{360} \times$ their 50 or 15	M1	
	$\begin{aligned} & \text { (Number of boys }=\text {) } 2 \times 4^{2}(\times \pi) \text { o } \\ & 32 \\ & \text { or }\left(\frac{4}{5}\right)^{2} \times 50(\times \pi) \end{aligned}$	M1	oe
	Blue eyed boys $=$ their $32 \div 4$ or 8	M1dep	Dependent on $3^{\text {rd }} \mathrm{M}$
	23	A1	Must see 32 and 50

15	$23,22,25$ or $24,21,25$	B3	B2 for 24, 22, 25 B2 for 23, 21, 25 B2 for 23.5, 21.5, 25 B2 for 23, 22, 26 B2 for 24, 21, 26 B2 for 23, 21, 26 B1 for 24, 22, 26 B1 for division by 10 seen or implied	
	Additional Guidance			
	NB dividing by year will show $215 \div 10$			B

16	16		B1 for $64^{\frac{1}{3}}=4$ B1 for $\sqrt[3]{64 \times 64}$ B2
B1 for $\left(64^{\frac{1}{3}}\right)^{2}$			
oe			
			B1 for $\left(64^{2}\right)^{\frac{1}{3}}$ oe

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

Alternative method 1

$\sqrt{3}^{2}+2 \times \sqrt{3} \times{\sqrt{75}+\sqrt{75}^{2}}^{\text {M1 }}$	Allow one error	
$3+2 \times 15+75$	A1	

Alternative method 2

$6 \sqrt{3}$		
or $\sqrt{3}^{2} \times(1+\sqrt{25})^{2}$	M1	
or $\sqrt{3}+5 \sqrt{3}$		
3×6^{2}	A1	

Alternative method 3

$\sqrt{108}=6 \sqrt{3}$	M1	
$\sqrt{3}+5 \sqrt{3}=\sqrt{3}+\sqrt{75}$	A1	

Additional Guidance

$(\sqrt{3}+\sqrt{75})(\sqrt{3}+\sqrt{75})=9+\sqrt{225}+\sqrt{225}+75=108$	M1, A0

$2(x-1)+x-3$ or $(x-3)(x-1)$	M1	
$2(x-1)+x-3=(x-3)(x-1)$	M1dep	
$2 x-2+x-3=x^{2}-x-3 x+3$ and $x^{2}-7 x+8=0$	A1	oe Do not award if any incorrect anlegra seen in collecting terms
Additional Guidance		
lgnore any attempts to solve	M1, M1dep	
$2(x-1)+x-3=(x-3)(x-1)$ $3 x-5=x^{2}-4 x+3$ $x^{2}-7 x+8=0$	A1	

Q	Answer	Mark	Comments
19	$(2 x+5)(3 x+1)=8$	M1	
	$6 x^{2}+17 x-3=0$	A1	
	$(6 x-1)(x+3)$ or $(a x+c)(b x+d)$ where $a b=6$ and $c d=3$ or $\frac{-17 \pm \sqrt{361}}{12}$ or $\frac{17 \pm \sqrt{361}}{12}$ or $\frac{-17 \pm \sqrt{217}}{12}$	M1	An attempt to solve their quadratic if not $6 x^{2}+17 x+5=0$. Must take as far as a correct factorisation or correct substitution into formula.
	$\frac{1}{6}$	A1ft	If negative value (-3 if correct) given do not award A1 ft their solution if only positive value given and evaluated to 2 dp at least
	Additional Guidance		
	$\begin{aligned} & (2 x+5)(3 x+1)=8 \\ & 6 x^{2}+8 x+2 x+5=8 \\ & 6 x^{2}+10 x-3=0 \\ & \frac{-10 \pm \sqrt{172}}{12} \\ & \hline \end{aligned}$		$\begin{aligned} & \hline \text { M1 } \\ & \text { A0 } \\ & \text { M1 } \\ & \text { A0 } \end{aligned}$
	$\begin{aligned} & (2 x+5)(3 x+1)=8 \\ & 6 x^{2}+5 x+2 x+5=8 \\ & 6 x^{2}+7 x-3=0 \\ & (2 x+3)(3 x-1)=0 \\ & \frac{1}{3} \end{aligned}$		M1 A0 M1 A1ft
20a	130	B1	
20b	95	B1	

Q	Answer	Mark	Comments

20c	$\begin{aligned} & B A D=50 \text { or } \\ & B O D \text { (reflex) }=260 \\ & \text { or } A D C=75 \end{aligned}$	B1	
	$B O D=100$	B1	
	$O B C=65$ or $O D C=65$	B1	
	10	B1	
	Additional Guidance		

$\mathbf{2 1}$	$\frac{150}{360} \times 2 \times \pi \times 6$ or 5π or $[15.5,15.71]$	M1	oe
	$2 \times$ their 5π or $\frac{300}{360} \times 2 \times \pi \times 6$	M1dep	NB $\frac{300}{360} \times 2 \times \pi \times 6$ is M2
	10π or $[31,31.42]$	A1	
	their $10 \pi+18$ or $[49,49.42]$	A1ft	$\mathrm{SC1} 18$ or $6+6+3+3$ seen

