GCSE Mathematics (Linear)

4365/1H Paper 1

Mark scheme

4365
June 2016

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk.

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

M Method marks are awarded for a correct method which could lead to a correct answer.

A Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.

B
ft

SC Special case. Marks awarded for a common misinterpretation which has some mathematical worth.

M dep \quad A method mark dependent on a previous method mark being awarded.

B dep A mark that can only be awarded if a previous independent mark has been awarded.
oe
Or equivalent. Accept answers that are equivalent.
e.g. accept 0.5 as well as $\frac{1}{2}$
$[a, b] \quad$ Accept values between a and b inclusive.
$[\mathrm{a}, \mathrm{b}) \quad$ Accept values $\mathrm{a} \leq$ value $<\mathrm{b}$
3.14... Accept answers which begin 3.14 e.g. 3.14, 3.142, 3.1416

Q
Marks awarded for quality of written communication

Use of brackets It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a candidate has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the candidate. In cases where there is no doubt that the answer has come from incorrect working then the candidate should be penalised.

Questions which ask candidates to show working

Instructions on marking will be given but usually marks are not awarded to candidates who show no working.

Questions which do not ask candidates to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Candidates often copy values from a question incorrectly. If the examiner thinks that the candidate has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then
M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the candidate intended it to be a decimal point.

Paper 1 Higher Tier

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

1	Alternative method 1		
	$\begin{aligned} & (10 \%=) 19 \text { or }(50 \%=) 95 \text { or }(20 \%=) \\ & 38 \text { or }(30 \%)=57 \text { or }(5 \%=) 9.5 \text { or }(1 \% \\ & =) 1.9 \text { etc } \end{aligned}$	M1	Any correct comparison of a percentage and a value except $100 \%=190$
	Any combination of values that make 35% eg 95 - their 19 - their 9.5 , their 19 + their 19 + their 19 + their 9.5 or 66.5	M1dep	Must be correct values or valid method shown leading to their values $256.5 \text { or } 256 \frac{\mathbf{1}}{\mathbf{2}} \text { or } 256.50 \text { p }$
	256.50	Q1ft	Strand (i) ft 190 + their 35% if M1, M0 awarded Must be correct money notation
	Alternative method 2		
	$\begin{aligned} & 0.35 \text { or } 1.35 \text { seen or } \frac{35}{100} \text { or } \frac{135}{100} \text { or } \\ & 135 \% \end{aligned}$	M1	
	$0.35 \times 190 \text { or } 1.35 \times 190 \text { or } 66.5$ or $\frac{135}{100} \times \frac{190}{1}$ or $\frac{35}{100} \times \frac{190}{1}$	M1dep	oe 256.5 or $256 \frac{\mathbf{1}}{\mathbf{2}}$ or 256.50 p
	256.50	Q1	Strand (i) Must be correct money notation

1	Additional Guidance		
	$\begin{aligned} & 19 \\ & 38 \\ & 5 \%=19 \div 2=8 \\ & 35 \%=19+38+8=65 \\ & 255 \end{aligned}$		M1 M1dep Q0
	$\begin{aligned} & 10 \%=19 \\ & 20 \%=38 \\ & 5 \%=8 \\ & 35 \%=19+38+8=65 \\ & 255 \end{aligned}$		M1 MOdep Q1ft
	$\begin{aligned} & 10 \%=19 \\ & 20 \%=38 \\ & 5 \%=9.5 \\ & 35 \%=19+38+9.5=64.5 \\ & 254.50 \end{aligned}$		M1 M1dep Q0 ft
	190×1.35 Uses box method to get 256.5 265.50	Transcription error.	M1 M1dep Q1
	$\begin{aligned} & 10 \%=19 \\ & 20 \%=36 \\ & 5 \%=9.5 \\ & 35 \%=19+36+9.5=44.5 \\ & 224.50 \end{aligned}$		M1 MOdep QOft

Q Answer		Mark	Comments	
	Alternative method 1			
	$($ Width $=) 10$ or (length $=$) 15 seen	B1	May be on the diagram	
	their height \times their width \times their length with at least two values correct or $5 \times 10 \times 15$	M1		
	750	A1	Ignore incorrect units, eg cm ${ }^{2}$ SC2 for 6000 from using 10 as diameter	
2	Alternative method 2			
	$5 \times 5 \times 5$ or 125	B1		
	$6 \times$ their 125	M1	their 125 must be from $5 \times 5 \times 5$	
	750	A1	Ignore incorrect units, eg cm^{2} SC2 for 6000 from using 10 as diameter	
	Additional Guidance			
	On diagram, height marked as 10 , width as 10 and length as 15$\begin{aligned} & 10 \times 10 \times 15 \\ & 1500 \end{aligned}$			$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A0 } \end{aligned}$
	On diagram, height marked as 10 , width as 20 and length as 15$\begin{aligned} & 10 \times 20 \times 15 \\ & 3000 \end{aligned}$			$\begin{aligned} & \text { B1 } \\ & \text { M0 } \\ & \text { A0 } \end{aligned}$
	On diagram, height marked as 10 , width as 20 and length as 30$\begin{aligned} & 10 \times 20 \times 30 \\ & 6000 \end{aligned}$			SC2
	On diagram, height marked as 5 , width and length as 15 In script $10 \times 20 \times 30$ 6000		Mark method that leads to answer.	SC2
	On diagram, height marked as 5 , width as 20 and length as 30$\begin{aligned} & 5 \times 20 \times 30 \\ & 3000 \end{aligned}$			$\begin{array}{\|l} \text { B0 } \\ \text { M0 } \\ \text { A0 } \end{array}$
	$\begin{aligned} & 5 \times 10 \times 15 \\ & =750 \\ & 750 \div 3=250 \text { (on answer line) } \end{aligned}$		Mark whole method	B1 MO, AO

Q Answer		Mark	Comments		
	Alternative method 1				
	Straight line of best fit drawn	M1	Line of best fit must be long enough to go between $[(4,460),(4,600)$] and $[(22.5,120),(25,180)]$		
	470	A1ft	ft their line if M1 awarded ($\pm 1 / 2$ small square accuracy) Must be read from 7 ($\pm 1 / 2$ small square) SC1 no LOBF or wrong LOBF and answer in range $[420,540]$. If point shown must be at 7 ($\pm 1 / 2$ small square)		
6b	Alternative method 2				
	Chooses $(4,560)$ and any other point $\left(x_{1}, y_{1}\right)$ or $(10,390)$ Calculates $560-3 \times \frac{\left(560-y_{1}\right)}{\left(x_{1}-4\right)}$ or $y_{1}+\frac{\left(x_{1}-7\right)\left(560-y_{1}\right)}{\left(x_{1}-4\right)}$	M1			
	Correct answer for their chosen value $(10,390)$ gives 475 Value given to 3 sf at least	A1	SC1 interpolati answer in rang	480 380 400 360 300 360 260 300 240 120 180 does 20,5	 not score M1 but 40]
	Additional Guidance				
	$\begin{aligned} & (4,560) \text { to }(10,390) \\ & (4+10) \div 2=7 \\ & (560+390) \div 2=475 \end{aligned}$				M1, A1
	$\begin{array}{\|l} (4,560) \text { to }(8.5,480) \\ 480+(1.5 \div 4.5) \times(560-480) \\ 506.66 \\ \hline \end{array}$				M1, A1
	Line of best fit in range and answer in range but read from 7.5				M1, A0

Q	Answer	Mark	Comments
8a	4	B1	
8b	1, 1, 2, 3 or $1,1,4,4$ or $1,2,3,4$ or $1,2,5,5$ or $1,3,4,5$ or $1,3,6,6$ or $1,4,5,6$ or $2,2,3,5$ or $2,2,5,6$ or $2,3,4,6$	B2	Numbers do not have to be in order B1 for any set of 4 whole numbers between 1 and 6 with middle two values when ordered that differ by an odd number SC1 for a correct answer that uses whole numbers greater than 6 and/or 0 , eg 3, 4, 5, 8 $2 \times$ range $=($ sum middle two values +1$)$
	Additional Guidance		
	5, 1, 3, 4		B2
	1, 1, 4, 5		B1
	2, 2, 3, 4		B1
	4, 1, 4, 5		B0
	1, 3, 4, 8		B0
	4, 5, 6, 10		SC1
	0, 0, 1, 1		SC1

9c	$6 a^{2} b^{4}$	B2	B1 If all parts correct but \times or one + included B1 for 2 correct (\times may be included but + may not) B1 if wrong further work after correct answer seen	
	Additional Guidance			
	$10 a^{2} b^{4}$			B1
	$6 a^{3} b^{4}$			B1
	$6 a^{2} b^{5}$			B1
	$6 \times a^{2} \times b^{4}$			B1
	$6 \times a^{2}+b^{4}$			B1
	$6 a^{2} b^{4}=\left(3 a b^{2}\right)^{2}$			B1
	$10 \times a^{2} \times b^{4}$			B1
	$6+a^{2}+b^{4}$			B0

Q	Answer	Mark	Comments	
10a	1.8×10^{4}	B2	B1 18×10^{3} or 18000 seen B1 for $\frac{1800000}{100}$ oe B1 for 300000×0.06	
	Additional Guidance			
	18,000		Standard notation	B1
	18.000		Continental notation	B1
	1800000×0.01			B1

10b	5×10^{3}	B2	B1 0.5×10^{4} or 5000 seen B1 for 120000 seen	
	Additional Guidance			
	5,000		Standard notation	B1
	5.000		Continental notation	B1

12a	35	B1	
12b 25 B1			

\mathbf{Q}	Answer	Mark	Comments

	$X Y C=105$ (cyclic quadrilateral)	B1	Reason not necessary
BYX $=75$ (straight line) and $X A B=105$ (cyclic quad)	B1	Reason not necessary	
(Parallel as) (co) interior (allied) angles add up to 180 (supplementary) or $D A$ extended and 75 shown (Parallel as) angles (at A and D) are corresponding or $B A$ extended and 75 shown (Parallel as) angles (at A and D) are alternate or $C D$ extended and 105 shown (Parallel as) angles (at A and D) are alternate	Q1	Strand (ii) Complete argument for parallel lines.	
Both Bs must be scored before Q mark can beallel can be assumed to gain full marks but one of the reasons given on left must be stated as starting point. Q0 ff any angles are wrongly marked or stated			

Additional Guidance

If 105 shown as angle opposite 75 in $X D C Y$ award B1 even if other angles are shown If 75 and 105 shown as $B Y X$ and $X A B$ then award B1 even if other angles shown

Award Q1 only if there are no other angles than $C Y X, B Y X$ and $X A B$ shown and a valid reason given

If $C Y X$ not shown or stated and 75 given as $B Y X$ using exterior angle of cyclic quad $=$ opposite interior angle, this should be stated to gain 1st B1, otherwise it is B0, B0 as it could be a misinterpretation of circle theorems

Angles are	$\begin{array}{\|l\|} \mathrm{B} 1 \\ \mathrm{~B} 1 \\ \mathrm{Q} 1 \end{array}$
Parallel as angles at A are corresponding	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \\ & \mathrm{Q} 0 \end{aligned}$
$\begin{aligned} & \text { If } A B \text { parallel to } D C \quad X A B+X D C=180 \text { as interior angles, } \\ & \therefore X A B=105 \\ & \therefore B Y X=75 \text { (opposite angle in a cyclic quad) } \\ & \therefore X Y C=105 \text { (angles on a straight line) } \\ & \therefore X Y C+X D C=180 \text { (opposite angles in a cyclic quad) QED } \end{aligned}$	If parallel assumed must be stated. B1 B1 Q1

\mathbf{Q}	Answer	Mark	Comments

Alternative method 1

$(a x \pm c)(b x \pm d)$	M 1	$a b=4$ and $c d= \pm 3$
$(4 x-3)(x+1)$	A 1	
$\frac{3}{4}$ and -1	A1ft	ft their brackets if M1 awarded

Alternative method 2

$\frac{-1 \pm \sqrt{1^{2}-4 \times 4 \times-3}}{2 \times 4}$	M1	Allow one error from wrong sign for $-b$, wrong signs for $-4 a c, b^{2}$ as -1 Do not accept wrong formula, ie + not $\pm, 2$ not $2 a$ or only dividing root by $2 a$				
$\frac{-1 \pm \sqrt{49}}{8}$	A1					
$\frac{3}{4}$ and -1	A1	oe ft on wrong sign for $-b$ only eg $-\frac{3}{4}$ and 1				
Alternative method 3	M1					
$\left(x+\frac{1}{8}\right)^{2}=\frac{49}{64}$	A1					
$x= \pm \sqrt{\frac{49}{64}-\frac{1}{8}}$	A1ft	oe				
$\frac{3}{4}$ and -1						

\mathbf{Q}	Answer	Mark	Comments

13b	Alternative method 4			
	Writes $x^{2}+x-12$ and writes $\left(x \pm \frac{a}{4}\right)\left(x \pm \frac{b}{4}\right)$ where $a b=-12$$\left(x+\frac{4}{4}\right)\left(x-\frac{3}{4}\right)$	M1	$(4 x \pm 4)(4 x \pm 3)$	
		A1	oe eg $(4 x+4)(4 x-3)$	
	$\frac{3}{4}$ and -1	A1ft	oe ft their brackets if M1 awarded	
	Additional Guidance			
	$(2 x-1)(2 x+3), \quad \frac{1}{2}$ and $-1 \frac{1}{2}$			M1, A0, A1 ft
	$\frac{1 \pm \sqrt{1^{2}-4 \times 4 \times-3}}{2 \times 4}, \quad-\frac{3}{4}$ and 1			M1, A0, A1ft
	$(4 x+3)(x-1),-\frac{3}{4}$ and 1			M1, A0, A1ft
	$\begin{aligned} & x^{2}+x-12 \\ & \left(x+\frac{2}{4}\right)\left(x-\frac{6}{4}\right) \\ & 1 \frac{1}{2} \text { and }-\frac{1}{2} \end{aligned}$			$\begin{aligned} & \text { M1 } \\ & \text { A0 } \\ & \text { A1ft } \end{aligned}$

Q	Answer	Mark	Comments

	Alternative method 1			
	$\frac{1}{2} \times 3 \sqrt{2} \times \frac{1}{\sqrt{2}} \times x=12$	M1	Must substitute values	and must = 12
	8	A1	Correct answer with no contradictory working is	working or no 2 marks
14	Alternative method 2			
	Drops perpendicular from A to $B C$ and calculates height as $3 \sqrt{2} \times \frac{1}{\sqrt{2}}$ (or 3) and $\frac{1}{2} \times B C \times$ their $3=12$	M1		
	8	A1	Correct answer with no contradictory working is	working or no 2 marks
	Additional Guidance			
	Allow any letter or a dash for x but be careful with the letter h as this may be the hypotenuse of a right-angled triangle			
	Do not award M1 for wrong use of formula			
	$\frac{1}{2} \times 3 \sqrt{2} \times{ }_{-} \times \frac{1}{\sqrt{2}}=12$			M1
	$24=3 \sqrt{2} \times \times \times \frac{1}{\sqrt{2}}$			M1
	$\begin{aligned} & \frac{1}{2} \times 3 \sqrt{2} \times x \times \sin 45=12 \\ & \frac{1}{2} \times 3 \sqrt{2} \times x \times 45 \times \frac{1}{\sqrt{2}}=12 \end{aligned}$			M0
	$3 \sqrt{2} \times x \times \frac{1}{\sqrt{2}}=12$			M0

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

Alternative method $\mathbf{1}$		
$y x=3 x+5$	M1	Cross multiplying Allow $y \times x=3 \times x+5$
$y x-3 x=5$ or $3 x-y x=-5$	M1dep	oe
$x=\frac{5}{y-3}$ or $x=\frac{-5}{3-y}$	A1ft	Must have $x=$ as part of answer ft on one rearrangement error

Alternative method 2

$y=3+\frac{5}{x}$	M1	
$y-3=\frac{5}{x}$	M1dep	oe
$x=\frac{5}{y-3} \text { or } x=\frac{5}{3-y}$	A1ft	Must have $x=$ as part of answer ft on one rearrangement error
Additional Guidance		
$\begin{aligned} & y x=3 x+5 \\ & y x+3 x=5 \\ & x=\frac{5}{y+3} \end{aligned}$		M1 MOdep A1ft
$\begin{aligned} & y x=3 x+5 \\ & 3 x-y x=5 \\ & x=\frac{5}{3-y} \end{aligned}$		M1 MOdep A1ft
$\begin{aligned} & y=3+\frac{5}{x} \\ & y+3=\frac{5}{x} \\ & x=\frac{5}{y+3} \end{aligned}$		M1 MOdep A1ft

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

16	Alternative method 1		
	$8(3 x-1)<6(x+1)$ or $24 x-8<6 x+6$ or $4(3 x-1)<3(x+1)$ or $12 x-4<3 x+3$	M1	If expanded, must be 4 terms with at least 3 correct
	$24 x-6 x<6+8$ or $18 x<14$	M1dep	oe
	$x<\frac{7}{9}$	A1ft	oe ft one expansion or rearrangement error Must have $x<$ Must be fraction with whole number numerator and denominator Accept $x<\frac{14}{18}$
	Alternative method 2		
	$1.5 x-0.5<0.375 x+0.375$	M1	oe eg $\frac{3}{2} x-\frac{1}{2}<\frac{3}{8} x+\frac{3}{8}$ Must have 4 terms with at least 3 correct
	$\begin{aligned} & 1.5 x-0.375 x<0.375+0.5 \\ & \text { or } 1.125 x<0.875 \end{aligned}$	M1dep	$\text { oe eg } \frac{9}{8} x<\frac{7}{8}$
	$x<\frac{875}{1125}$	A1ft	oe ft one expansion or rearrangement error Must have $x<$ Must be fraction with whole number numerator and denominator $x<\frac{0,875}{1,125} \text { is } \mathrm{AO}$

Q	Answer	Mark	Comments

16	Alternative method 3		
	$3 x-1<\frac{6}{8}(x+1)$ or $3 x-1<\frac{\mathbf{3}}{\mathbf{4}} x+\frac{\mathbf{3}}{\mathbf{4}}$	M1	oe
	$\begin{aligned} & 3 x-\frac{3}{4} x<\frac{3}{4}+1 \\ & 2 \frac{1}{4} x<1 \frac{3}{4} \end{aligned}$	M1dep	oe
	$x<\frac{7}{9}$	A1ft	oe ft one expansion or rearrangement error Must have $x<$ Must be fraction with whole number numerator and denominator $x<\frac{1.75}{2.25} \text { is AO }$

16	Additional Guidance		
	Allow \leq		
	Student replaces < with equals and gets $x=\frac{7}{9}$ but does not recover		M0
	Student replaces < with equals and gets $x=\frac{7}{9}$ but recovers to $x<\frac{7}{9}$		M1, M1dep, A1
	$\begin{aligned} & 3 x-1=\frac{3}{4} x+\frac{3}{4} \\ & 2 \frac{1}{4} x=1 \frac{3}{4} \\ & <\frac{7}{9} \end{aligned}$	Recovered < to allow method and partial accuracy but omits x so loses last mark	M1 M1dep AO
	$24 x-8<6 x+7,18 x<15, x<\frac{5}{6}$	One expansion error	M1, MOdep, A1ft
	$12 x-4<3 x+3,15 x<7, x<\frac{7}{15}$	One rearrangement error	M1, M0dep, A1ft
	$1.5 x-0.5<\frac{3}{8} x+\frac{3}{8}$	Mix of decimal and fractions OK	M1

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

17a	$y=15$ drawn to cut both or one side(s) of graph or markings on graph at $y=$ 15	M1		
	[2.6, 2.8] and [-2.8, -2.6]	A1	SC1 no line or incorrect line drawn and two answers in range Answers can be given as coordinates, eg ($-2.8,15$), $(2.8,15)$	
	Additional Guidance			
	As the clip starts above the graph when scrolling through you may see a line $y=15$ or marks on graph at $y=15$, this will be M1 (also note if $y=10$ drawn). Then check answers			
	No line drawn			SC1
	Line $y=15$ drawn Answers 2.38 and -2.38			$\begin{aligned} & \text { M1 } \\ & \text { A0 } \end{aligned}$

Q	Answer	Mark	Comments

18	Additional Guidance				
	$\begin{aligned} & 15-3 \sqrt{3}-5 \sqrt{3}-\sqrt{9} \\ & 12-8 \sqrt{3} \\ & 6-4 \sqrt{3} \end{aligned}$				$\begin{aligned} & \text { M1 } \\ & \text { A0 } \\ & \text { A1ft } \end{aligned}$
	$\begin{aligned} & 15+3 \sqrt{3}-5 \sqrt{3}+\sqrt{9} \\ & 18-2 \sqrt{3} \\ & 9-\sqrt{3} \end{aligned}$				$\begin{aligned} & \text { M1 } \\ & \text { A0 } \\ & \text { A1ft } \end{aligned}$
	$\begin{aligned} & 15-3 \sqrt{3}-5 \sqrt{3}+\sqrt{3} \\ & 15-7 \sqrt{3} \\ & 7 \frac{1}{2}-\frac{7}{2} \sqrt{3} \end{aligned}$				$\begin{aligned} & \text { M1 } \\ & \text { A0 } \\ & \text { A1ft } \end{aligned}$
	$\begin{aligned} & 15-3 \sqrt{3}-5 \sqrt{3}+\sqrt{9} \\ & 18+8 \sqrt{3} \\ & 9+4 \sqrt{3} \end{aligned}$				M1 AO A1ft
	$\begin{aligned} & \frac{15-3 \sqrt{3}-5 \sqrt{3}+3}{2} \\ & 2(15-3 \sqrt{3}-5 \sqrt{3}+3) \\ & 30-6 \sqrt{3}-10 \sqrt{3}+6 \\ & 36-16 \sqrt{3} \end{aligned}$			First A1 for $18-8 \sqrt{3}$ by implication	M1 A1 A0
	$15+3 \sqrt{3}-5 \sqrt{3}-\sqrt{9}$				M0
		5	$-\sqrt{3}$		M1
	3	15	$-3 \sqrt{3}$		
	$-\sqrt{3}$	$-5 \sqrt{3}$	-3		
		5	$-\sqrt{3}$		MO (but can be recovered)
	3	15			
	$-\sqrt{3}$	$5 \sqrt{3}$	3		

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

19 a	$y=\frac{1}{x}$	B 1	
19 b	$(0,1)$	B 1	

20	Alternative method 1		
	$2 x \times 2 x \times x$	M1	
	$\frac{4}{3} \pi x^{3} \text { and } 4 x^{3}$	A1	Allow \times signs, eg $\frac{4}{3} \times \pi \times x^{3}$
	$\frac{4}{3} \pi x^{3}$ and $4 x^{3}$ and justification such that $\frac{\pi}{3}>1 \text { or } \frac{4}{3} \pi>4$	Q1	Strand (ii)
	Alternative method 2		
	Chooses a value for r, say 10 $\frac{4}{3} \times \pi \times 10^{3} \text { and } 20 \times 20 \times 10$	M1	
	$\frac{4000 \pi}{3}$ and 4000 or numerical values if π taken as 3.1 , say	A1	If values are calculated wrongly do not award this mark but Q mark can still be gained
	their $\frac{4000 \pi}{3}$ and their 4000 with at least one correct and justification such that $\frac{\pi}{3}>1$ or $\frac{4}{3} \pi>4$ oe	Q1	$\pi>3$ not enough without justification that $\frac{4000 \pi}{3}$ will be greater than 4000

Q	Answer	Mark	Comments

20	Additional Guidance		
	Note that $\frac{4}{3} \pi r^{3}$ is just quoting the given formula. Must have $\frac{4}{3} \pi x^{3}$ and $4 x^{3}$		
	Note that truncation of π to 3.1 or 3.14 is OK but rounding up is not. This would negate the Q mark.		
	Let $r=2$, $\begin{aligned} & \frac{4}{3} \times \pi \times 2^{3}=1.3 \times \pi \times 8=10.4 \pi \\ & 4 \times 4 \times 2=32 \\ & 10.4 \times 3.1=31.2+1.04=32.24>32 \end{aligned}$	Truncating values of 4 3 and π but showing that this still gives a value greater than 3 is acceptable	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{Q} 1 \end{aligned}$
	$\begin{aligned} & 2 x \times 2 x \times x=4 x^{3} \\ & =1.3 \times 3.14 \times x^{3} \end{aligned}$ Uses box method to get $4.29 x^{3}$ Sphere $=4.29 x^{3}>$ Cuboid $4 x^{3}$	$1.3 \times 3.14 \neq 4.29$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{AO} \\ & \mathrm{Q} 1 \end{aligned}$
	Let $r=4$, $\begin{aligned} & \frac{4}{3} \times \pi \times 4^{3}=\frac{4}{3} \times \pi \times 64=\frac{256}{3} \pi \\ & 8 \times 8 \times 4=256 \\ & \frac{256}{3} \pi>256 \\ & \frac{\pi}{3}>1 \\ & \pi>3 \end{aligned}$		M1 A1 Q1

