

AQA Qualifications

GCSE Mathematics

43603H Unit 3: Higher Mark scheme

4360 November 2016

Version/Stage: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Copyright © 2016 AQA and its licensors. All rights reserved.

AQA retains the6copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

Μ	Method marks are awarded for a correct method which could lead to a correct answer.
Α	Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.
В	Marks awarded independent of method.
ft	Follow through marks. Marks awarded for correct working following a mistake in an earlier step.
SC	Special case. Marks awarded for a common misinterpretation which has some mathematical worth.
М dep	A method mark dependent on a previous method mark being awarded.
B dep	A mark that can only be awarded if a previous independent mark has been awarded.
oe	Or equivalent. Accept answers that are equivalent.
	e.g. accept 0.5 as well as $\frac{1}{2}$
[a, b]	Accept values between a and b inclusive.
[a, b)	Accept values a ≤ value < b
3.14	Accept answers which begin 3.14 e.g. 3.14, 3.142, 3.1416
Q	Marks awarded for quality of written communication
Use of brackets	It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a candidate has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the candidate. In cases where there is no doubt that the answer has come from incorrect working then the candidate should be penalised.

Questions which ask candidates to show working

Instructions on marking will be given but usually marks are not awarded to candidates who show no working.

Questions which do not ask candidates to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Candidates often copy values from a question incorrectly. If the examiner thinks that the candidate has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the candidate intended it to be a decimal point.

Q	Answer	Mark	Comments

	19.9(0) × 1.5 ÷ 2 or 14.92(5) or 14.93 or 19.9(0) × 1.5 or 29.85	M1		
	$\frac{15}{100} \times 18 \text{ or } 2.7(0)$ or $\frac{15}{100} \times 18 \times 2 \text{ or } 5.4(0)$	M1	0.85 seen	
1	18 – their 2.7(0) or 0.85 × 18 or 15.3(0) or 36 – their 5.4(0) or 0.85 × 18 × 2 or 30.6(0)	M1dep	dependent on 2nd M1 oe or 0.85 × 36	
	15.3(0) and 14.93 or 30.6(0) and 29.85	A1		
	A and 14.92(5) or 14.93 and 15.3(0) or A and 29.85 and 30.6(0)	Q1ft	Strand (iii) Correct comparison made for the same number of shirts with M3 scored	
	Additional Guidance			
	A and 29.85 and 33.3(0) – discount of 15% on one shirt only			M1M1M1A0Q1ft

Q	Answer	Mark	Comments

2(a)	P = 2(l+w)	B1	
2(b)	$A = d^2$	B1	
2(c)	S = 2(xy + xz + yz)	B1	

	150 ÷ 6 or 25	M1	
2(d)	$\sqrt{\text{their 25}}$ or 5	M1dep	
	their 5 ³	M1dep	oe
	125	A1	
	Additional Guidance		

Q	Answer	Mark	Comments			
· /						
	$\pi \times 2.5^2$	M1	oe			
3(a)	19.6()	A1				
	20	B1ft	ft their 2 sf or more answer			
	Additional Guidance					
	20.0			B0		

3(b)	π × 16 or 50.()	M1	oe
	$\pi \times \frac{16}{2}$ or $\pi \times 8$ or 25.()	M1dep	oe
	41.()	A1	Accept 16 + 8π Accept 40 if working shown
	Additional Guidance		

Q Answer Mark Comments

	Rotation	B1		
4(a)	90 [°] clockwise or 270 [°] anti-clockwise	B1		
	(-1, 0)	B1		
	Additional Guidance			
	More than one transformation			B0
	Accept 1/4 turn clockwise for 90° clockwi	se		

Q	Answer	Mark	Comments	
			·	
	Correctly evaluated trial less than 4	M1	eg 2 → -12	
			3 → -3	
			3.1 → -1.209	
			3.2 → 0.768	
			3.3 → 2.937	
			3.4 → 5.304	
	Obtains $3 \le x \le 4$ or better	M1dep	2 5 -> 7 075	
			3.5 - 10.656	
			$3.7 \rightarrow 13.653$	
			3.8 → 16.872	
			3.9 → 20.319	
			3.35 → 4.095375	
	Obtains $3.4 \le x \le 3.5$ or two correct trials [3.35, 3.45] which bracket 6	A1	3.45 → 6.563625	
5				
			3.44 → 6.307584	
			3.43 → 6.053607	
			3.42 → 5.801688	
	Tests 3.45 and concludes 3.4			
	or two correct trials [3.35, 3.45] which	01	Strand (ii)	
	bracket 6		Using 2 dp to ensure 1 dp	
	and 3.4 for final answer			
	Additional Guidance			
				ΜΟΜΟΔΟΟΟ
	3.4 without working shown			
	3.4 without final trial			M1M1A1Q0
	Allow rounded or truncated values			

	Alternative method 1			
	4.5 litres = 1 gallon seen or implied	B1		
	27 ÷ their 4.5 or 6	M1		
	their 6 × 36 or 216	M1dep		
	216 and yes	A1		
	Alternative method 2			
	4.5 litres = 1 gallon seen or implied	B1		
	36 ÷ their 4.5 or 8 or 210 ÷ 27 or 7.7()	M1		
	their 8 × 27 or 216 or 36 ÷ their 4.5 or 8 and 210 ÷ 27 or 7.7()	M1dep		
	216 and yes	A1		
	or 7.7() and 8 and yes			
6	Alternative method 3			
	4.5 litres = 1 gallon seen or implied	B1		
	210 ÷ 36 or 5.83	M1		
	their 5.83× their 4.5 or 26.25	M1dep		
	26.25 and yes	A1		
	Alternative method 4		-	
	4.5 litres = 1 gallon seen or implied	B1		
	27 ÷ their 4.5 or 6	M1		
	or 210 ÷ 36 or 5.83			
	27 ÷ their 4.5 or 6	M1dep		
	and 210 ÷ 36 or 5.83			
	6 and 5.83 and yes	A1		
	Ad	ditional G	uidance	
	Must clearly state their conversion			

Q	A	nswer	Mark	Comments	
	Alternative meth	od 1			
	y - x = 60	4y - 4x = 240	M1	ое	
	y + 4x = 120	y + 4x = 120	M1	oe Equating coefficients	
	5x = 60	5 <i>y</i> = 360	M1dep	oe Eliminating a variable	
	x = 12 or y = 72		A1	One solution	
	x = 12 and y = 72		A1	Both solutions	
	Alternative method 2				
7	y - x = 60	2y - 2x = 120 or $3y - 3x = 180$	M1	oe	
	y + 1.5x = 90 or $\frac{2}{3}y + x = 60$	y - x + y + 4x = 60 + 120 or 2y + 3x = 180	M1	oe Equating coefficients	
	2.5x = 30 $\frac{5}{3}y =$	120 or 5 <i>y</i> = 360	M1dep	oe Eliminating a variable	
	x = 12 or y = 72		A1	One solution	
	x = 12 and y = 72		A1	Both solutions	
				·	

	Alternative method	3		
	y + 4x = 120	y + 4x = 120	M1	
	y + 1.5x = 90	$\frac{8}{3}y + 4x = 240$	M1	oe Equating coefficients
7	2.5x = 30	$\frac{5}{3}y = 120$	M1dep	oe Eliminating a variable
	x = 12 or y = 72		A1	One solution
	<i>x</i> = 12 and <i>y</i> = 72		A1	Both solutions
	Additio			uidance

Q	Answer	Mark	Comments		
	Alternative method 1				
	$\frac{x}{x+5} = \frac{6}{10}$	M1	oe Setting up a correct equation		
	$10 \times x = 6 \times (x + 5)$	M1dep	oe Eliminating fractions		
	10x - 6x = 30 or $4x = 30$	M1dep	oe Collecting terms		
	7.5	A1			
	Alternative method 2				
8	$\frac{x+5}{10} = \frac{5}{4}$ or $\frac{x}{6} = \frac{5}{4}$	M1	oe Setting up a correct equation		
	4(x + 5) = 50 or 4x + 20 = 50	M1dep	oe Eliminating fractions		
	4x = 50 - 20 or $4x = 30$	M1dep	oe Collecting terms		
	7.5	A1			
	Additional Guidance				

Q	Answer	Mark	Comments		
		-			
	$\frac{2}{7}$ seen or $\frac{21 \times 5}{7}$ or 15	M1	$\frac{7}{5}y = 21$ or $y = 15$ (when y is length <i>EB</i>)		
	$\frac{2}{7}$ × 21 or 21 – 15 or 6	M1dep			
9	$\tan x = \frac{\text{their 6}}{21}$ or 0.2857()	M1	oe		
	45.0(-) or 46	A1ft	SC2 21.8		
	15.9() 01 10		SC1 8.4		
	Additional Guidance				
	For misreading $AE = \frac{2}{5}AB$, $\tan x = \frac{8.4}{21}$ gives $\tan x = 0.4$ and $x = 21.8$				

10a	$\frac{3}{5}$	B1	
-----	---------------	----	--

10b	60°	B1	

	<i>EOG</i> = 100	M1		
110	40	A1		
11a	Additional Guidance			

11b	112	B1			
	Opposite angles of a cyclic quadrilateral add up to 180	B1dep	Must have 112		
	Additional Guidance				
	Cyclic and opposite must be seen				

Q	Answer	Mark	Comments		
	37	B1			
11-	Alternate segment (theorem)	B1dep	Must have 37		
11C	Additional Guidance				

	$\frac{y}{\sin 73} = \frac{23}{\sin 40}$	M1	oe $\frac{y}{0.956} = \frac{23}{0.642}$		
12	23 sin 73 sin 40	M1dep	oe <u>23 × 0.956</u> <u>0.642</u>		
	34.(2)	A1			
	Additional Guidance				
	For the method marks accept rounded c	or truncated	d values		

	½ × 8.4 × 12 × sin 49	M1	$\sin 49 = \frac{h}{8.4}$ and $h = 8.4 \sin 49$ or $h = 6.3395()$
13	38.()	A1	
	Additional Guidance		

Q	Answer	Mark	Comments
		1	· · · · · · · · · · · · · · · · · · ·
	$\frac{-3\pm\sqrt{3^2-(4\times2\times-6)}}{2\times2}$	M1	Allow one error
	$\frac{-3\pm\sqrt{3^2-(4\times2\times-6)}}{2\times2}$		
14	or $\frac{-3 \pm \sqrt{9 + 48}}{2 \times 2}$	A1	Fully correct oe
	or $\frac{-3 \pm \sqrt{57}}{4}$		
	– 2.64 and 1.14	A1	SC2 for one answer ie –2.6() or 1.1()
	Ad	ditional G	uidance

	(x+2)(6x-1) = 28	M1		
	$6x^2 - x + 12x - 2 = 28$	M1dep	Allow one error	
	$6x^2 + 11x - 30 (= 0)$	M1dep	Collect terms to one side, ft their four terms	
	(3x + 10)(2x - 3) (=0)	A1		
15	$(x = -\frac{10}{3} \text{ and}) x = 1.5$	B1ft	oe ft their two brackets	
	2(6 × 1.5 – 1 + 1.5 + 2) or 14 × 1.5 + 2	M1	2(6x - 1 + x + 2) or $14x + 2$	
	23 (and $x = -\frac{10}{3}$ discarded)	A1	May be implied	
	Additional Guidance			

Q	Answer	Mark	Comments
	$55^2 = 32^2 + 40^2 - (2 \times 32 \times 40 \times \cos x)$	M1	oe
16	$\frac{32^2 + 40^2 - 55^2}{2 \times 32 \times 40}$ or -0.156 or -0.16	M1dep	
	99.()	A1	

Additional Guidance

Additional Guidance	17(a)	Fully correct graph	B1	
		Additional Guidance		

Q	Answer	Mark	Comments
---	--------	------	----------

18	6 b – 2 a	M1	2 a – 6 b
	$2a + \frac{1}{2}(6b - 2a)$	M1dep	oe $6\mathbf{b} - \frac{1}{2}(6\mathbf{b} - 2\mathbf{a})$
	2 a + 3 b – a	M1dep	6 b + a – 3 b
	a + 3 b	A1	3 b + a
	Additional Guidance		

19	$\frac{1}{3} \times \pi \times 9^2 \times 16 \text{ or } 432 \pi$	M1	oe [1356, 1357.4]	
	$(\frac{1}{2} \times) \frac{4}{3} \times \pi \times 9^3$ or 486 π or 972 π	M1	oe [1526, 1527.1] or [3052, 3054.1]	
	[1356, 1357.4] and [1526, 1527.1] or 432π and 486π	A1		
	[2882, 2884.5] or 2900 or 918π	A1		
	Additional Guidance			
	2900 with or without working			4 marks