AQA Qualifications

GCSE
 MATHEMATICS

Unit 3 43603H
Mark Scheme

43603H

November 2013
Final version 1.0

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

M	Method marks are awarded for a correct method which could lead to a correct answer.
A	Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.
B	Marks awarded independent of method.
Q	Marks awarded for Quality of Written Communication following a mistake in an earlier step.
ft	Special case. Marks awarded within the scheme for a common misinterpretation which has some mathematical worth.
SC	A method mark dependent on a previous method mark being awarded.
M dep	A mark that can only be awarded if a previous independent mark has been awarded.
B dep	Or equivalent. Accept answers that are equivalent.
ee	eg, accept 0.5 as well as $\frac{1}{2}$
[accept values between a and b inclusive.	

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a candidate has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the candidate. In cases where there is no doubt that the answer has come from incorrect working then the candidate should be penalised.

Questions which ask candidates to show working

Instructions on marking will be given but usually marks are not awarded to candidates who show no working.

Questions which do not ask candidates to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Candidates often copy values from a question incorrectly. If the examiner thinks that the candidate has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Q	Answer	Mark	Comments

$\mathbf{1}$	Correct enlargement or $\frac{1}{2} \times 3 \times 2$ or Area factor 9 or 9 and 6 seen	B1	Seen or implied oe
	$\frac{1}{2} \times 9 \times 6$ or $\frac{1}{2} \times 3 \times 2 \times 3^{2}$	$\mathrm{M1}$	oe
	27	A1ft	ft their triangle

2(a)	$1,0,4$	B2	B1 for 2 correct
2(b)	their 5 points plotted correctly	M1	$\pm \frac{1}{2}$ square
	Fully correct smooth curve	A1	$\pm \frac{1}{2}$ square
2(c)	Translation of their graph 3 units in negative y direction or fully correct graph	B2ft	$\pm \frac{1}{2}$ square B1 for their translated 5 points plotted $(-2,1)$ etc B1 for clear intention to translate 3 units in negative y direction

3	$180-107$ or 73 or $107-90$ or 17	M1	oe
	$180-$ their $73-$ their 73 or 17×2	M1dep	oe $(90-$ their 73$) \times 2$
	34	A1	

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

4

$x+35+x-23=180$	M1	oe $2 x+12=180$
$2 x=180-12$ or $2 x=168$	M1dep	$(180-12) \div 2$ or 84 Terms collected
119	A1	
$x=84$ and an algebraic equation with both method marks awarded for correct algebra	Q1	Strand (ii)

$5 \quad 2 \frac{4}{7}+5 \frac{3}{5}+2 \frac{4}{7}+5 \frac{3}{5}$

$16 \frac{12}{35}$	

6	8×500000 or 4000000	M1 or $8 \times 500000 \div 100$ or $8 \times 500000 \div 100000$	$1 \mathrm{~km}=1000 \mathrm{~m}$ and $1 \mathrm{~m}=100 \mathrm{~cm}$ seen or $1 \mathrm{~km}=100000 \mathrm{~cm}$ seen or implied
	40	M1dep	oe
	Alternative method	A1	
	or $500000 \div 1000$ or 500 or $500000 \div 100$ or 5000 or $8 \div 100$ or 0.08 or $8 \div 1000$ or 0.008	M1	$1 \mathrm{~km}=1000 \mathrm{~m}$ and $1 \mathrm{~m}=100 \mathrm{~cm}$ seen or $1 \mathrm{~km}=100000 \mathrm{~cm}$ seen or implied
	or $500000 \div 100000$ or 5 or $500000 \div 1000 \times 8$ or 4000 or $500000 \div 100 \times 8$ or 40000 or $500000 \div 100 \div 1000$ or $8 \div 100000$ or 0.00008	M1dep	A1
	40		

Q	Answer	Mark	Comments

7(a)	$\begin{aligned} & \frac{1}{2} \times(280+198) \times 86 \\ & \text { or } 198 \times 86+\frac{1}{2} \times(280-198) \times 86 \\ & \text { or } 280 \times 86-\frac{1}{2} \times(280-198) \times 86 \end{aligned}$	M1	oe
	20554	A1	
7(b)	their $20554 \div 4047$ or 5.08 or 5.07... or 5.1	M1	$4047 \div 7=578 .(14 . .$.
	their 5.08×7	M1dep	their $20554 \div$ their 578.(14...)
	$35.5 \ldots$ or 35.56 or 35.7	A1	
	35	Q1ft	Rounding down

8	$\begin{aligned} & 2 \times \pi \times 7 \\ & \text { or }[43.9,44] \end{aligned}$	M1	oe 14π
	$\begin{aligned} & 2 \times \pi \times 7 \div 4 \\ & \text { or }[10.9,11] \\ & \text { or } 2 \times \pi \times 7 \times 3 \\ & \text { or }[131.9,132] \end{aligned}$	M1dep	oe $7 \pi / 2$ oe 42π
	$\begin{aligned} & 2 \times \pi \times 7 \div 4 \times 3 \\ & \text { or [32.9, 33] } \end{aligned}$	M1dep	oe $21 \pi / 2$
	[46.9, 47]	A1	$\begin{aligned} & 10.5 \pi+14 \text { oe } \\ & \mathrm{SC} 2 \text { for }[23.4,23.5] \text { or }[30.4,30.5] \\ & \mathrm{SC} 1 \text { for }[16.4,16.5] \end{aligned}$

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

9	Trial such that root < trial ≤ 4	M1	eg $3^{3}+3=30$ (too big) Obtains $2<x \leq 4$ or better
	Improved correct trial	M1	$2<$ trial <1 st trial or $2<$ trial < root eg $2.5^{3}+2.5=18.125$ (too small)
	Obtains $2.8<x<2.9$ or better or obtains $2.75<x<2.85$ or better	A1	$\begin{aligned} & 2.6 \Rightarrow 20 .(176) \text { or } 20.2 \\ & 2.7 \Rightarrow 22 .(383) \text { or } 22.4 \\ & 2.8 \Rightarrow 24 .(752) \text { or } 24.8 \\ & 2.9 \Rightarrow 27 .(289) \text { or } 27.3 \\ & 2.75 \Rightarrow 23.5(468 \ldots) \end{aligned}$
	Tests 2.85 (or 2.82, 2.83 or 2.84) and concludes 2.8	Q1	$\begin{aligned} & 2.85 \Rightarrow 25.9(99 \ldots) \text { or } 26 \\ & 2.84 \Rightarrow 25.7(46 \ldots) \\ & 2.83 \Rightarrow 25.4(95 \ldots) \text { or } 25.5 \\ & 2.82 \Rightarrow 25.2(45 \ldots) \end{aligned}$ Using 2 dp to ensure 1 dp Strand (ii) Note: $2.81 \Rightarrow 24.998$...

10	$\pi \times 4 \times 4 \times 9$ or 144π	M1	[452, 453] or 450
	$\pi \times 10 \times 10 \times 36$ or 3600π	M1	[11 300, 11 320]
	$3600 \pi \div 144 \pi$	M1dep	[11 300, 11320$] \div[452,453]$ or 450
	25	A1	Condone [24.9, 25.1] SC2 for [24.9, 25.1] using incorrect formulae
	Alternative method		
	Ratio (SF) of radii $=2.5$	M1	
	Ratio (SF) of height $=4$	M1	
	$2.5 \times 2.5 \times 4$	M1dep	
	25	A1	Condone [24.9, 25.1] SC2 for [24.9, 25.1] using incorrect formulae

Q	Answer	Mark	Comments

11(a)	$180-90-74$ or $90-74$	M1	
	16	A1	
11(b)	8.7 and tangents from the same point (are equal)	B1	oe
11(c)	$\tan 74=\frac{8.7}{r}$ or $\tan 16=\frac{r}{8.7}$	M1	$\frac{8.7}{\sin 74}=\frac{r}{\sin 16}$
	$\frac{8.7}{\tan 74}$ or $8.7 \tan 16$	M1dep	$\frac{8.7 \sin 16}{\tan 74}$
	2.49(...) or 2.5	A1ft	ft from part (a)

12(a)	$5 x \times 5 x \times 5 x$ or $125 x^{3}$ or $5 x \times 2 x \times x$ or $10 x^{3}$	M1	oe $(5 x)^{3}$
	$5 x \times 5 x \times 5 x-5 x \times 2 x \times x$	M1dep	
	$125 x^{3}-10 x^{3}$	A1	SC1 for 125 and 10 seen
12(b)	115×3.5^{3}	M1	$(5 \times 3.5)^{3}-10 \times 3.5^{3}$
	$4930(.625)$ or 4931	A1	

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

$\left.\left.\left.\begin{array}{|c|l|c|c|}\hline 13 & \begin{array}{l}\text { Fully correct construction with circle in } \\ \text { tolerance and all arcs shown }\end{array} & \text { B4 } & \begin{array}{c}\text { B3 Fully correct except using one pair of } \\ \text { arcs and midpoint to construct } \\ \text { perpendiculars }\end{array} \\ \text { B3 Perpendiculars fully correct with arcs } \\ \text { intersecting in two places and no circle } \\ \text { or circle out of tolerance }\end{array}\right\} \begin{array}{l}\text { B2 Using one pair of arcs and midpoint to } \\ \text { construct perpendiculars, no circle or } \\ \text { circle out of tolerance } \\ \text { B2 No arcs, two perpendiculars correct and } \\ \text { circle in tolerance }\end{array}\right\} \begin{array}{l}\text { B2 One perpendicular fully correct with arcs } \\ \text { intersecting in two places } \\ \text { B1 No arcs, two perpendiculars correct and } \\ \text { no circle or circle out of tolerance }\end{array}\right]$

14	$(2 x+1)^{2}$ or $(2 x-1)^{2}$	M1	oe $8,15,17$ seen
	$4 x^{2}+2 x+2 x+1$ or $4 x^{2}+4 x+1$	A1	
	$4 x^{2}-2 x-2 x+1$ or $4 x^{2}-4 x+1$	A1	$2 x+1=17$ or $2 x-1=15$
	$(2 x+1)^{2}=(2 x-1)^{2}+8^{2}$ or their $(2 x+1)^{2}=$ their $(2 x-1)^{2}+8^{2}$ or $4 x^{2}+2 x+2 x+1$ $=4 x^{2}-2 x-2 x+1+64$ or $8 x=64$	M1	oe $2 x=16$
	8	A1	Do not accept 8 without working

Q	Answer	Mark	Comments

15(a)	$y \alpha \frac{1}{x}$ or $y=\frac{\mathrm{k}}{x}$	M 1	oe 5×9 or 45 seen
	$5=\frac{\mathrm{k}}{9}$ or $\mathrm{k}=45$	M1dep	oe
	$y=\frac{45}{x}$	A 1	oe
$\mathbf{1 5 (b)}$	their $45 \div 15$	M 1	
	3	A 1 ft	ft on inverse proportion

16	$9.5 \div 2(=4.75)$ or $19 \times 2(=38)$ or $9.5 \div 19(=0.5)$	M1	
	$\begin{aligned} & 57 \div 3(=19) \\ & \text { or } 19 \times 3(=57) \\ & \text { or } 57 \div 19(=3) \end{aligned}$	M1	
	$76 \div 4(=19)$ or $19 \times 4(=76)$ or $76 \div 19(=4)$	M1	
	A with full verification	A1	eg A and 4.75 (19 and 19) Checking density or A and 38 (57 and 76) Checking masses or A and 0.5 (3 and 4) Checking volumes

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

17(a)	$\frac{9^{2}+5^{2}-11^{2}}{2 \times 9 \times 5}(=\cos x)$	M1	$11^{2}=9^{2}+5^{2}-2 \times 9 \times 5 \cos x$
	$\begin{aligned} & -0.16(6 \ldots) \text { or }-0.17 \\ & \text { or }-\frac{15}{90} \text { or }-\frac{1}{6} \end{aligned}$	A1	Can be implied from answers of 99.(....) with 1st M1 awarded
	[99.59, 100]	A1	
17(b)	$\frac{1}{2} \times 9 \times 5 \times \sin (\text { their } 99.6)$	M1	
	$\frac{1}{2} \times 9 \times 5 \times \sin (\text { their } 99.6) \times 4$	M1dep	oe $\frac{1}{2} \times 9 \times 5 \times \sin$ (their 99.6) $\times 2$ $+\frac{1}{2} \times 9 \times 5 \times \sin (180-\text { their } 99.6) \times 2$
	[88.6, 89]	A1ft	

18	$\frac{240}{x-12}$ or $\frac{240}{x}$	M1	$x-12=\frac{240}{t+1} \text { or } x=\frac{240}{t}$
	$\frac{240}{x-12}$ and $\frac{240}{x}$	M1dep	$x-12=\frac{240}{t+1} \text { and } x=\frac{240}{t}$
	$\frac{240}{x-12}-\frac{240}{x}=1$	M1dep	$\frac{240}{t}-12=\frac{240}{t+1}$
	$240 x-240(x-12)=x(x-12)$ or $2880=x^{2}-12 x$ or $x^{2}-12 x-2880=0$	M1dep	$240(t+1)-12 t(t+1)=240 t$ or $t^{2}+t-20=0$ oe
	$(x+48)(x-60)$ or correct use of formula $\begin{aligned} & \frac{-12 \pm \sqrt{12^{2}-4(1)(-2880)}}{2(1)} \\ & \text { or }(x-6)^{2}-36-2880=0 \end{aligned}$	M1	$(t+5)(t-4)$ or correct use of formula $\frac{-1 \pm \sqrt{1^{2}-4(1)(-20)}}{2(1)}$
	60	A1	SC2 for 60 from trial and error

Copyright © 2014 AQA and its licensors. All rights reserved.
AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

