AQA Qualifications

GCSE
 Mathematics

Mark scheme
43603H
June 2015

Unit 3 43603H

Version 1: Final Mark Scheme

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

M Method marks are awarded for a correct method which could lead to a correct answer.

A

B Marks awarded independent of method.
Q Marks awarded for Quality of Written Communication
ft Follow through marks. Marks awarded for correct working following a mistake in an earlier step.

SC Special case. Marks awarded within the scheme for a common misinterpretation which has some mathematical worth.

Mdep A method mark dependent on a previous method mark being awarded.

B dep A mark that can only be awarded if a previous independent mark has been awarded.
oe
Or equivalent. Accept answers that are equivalent.
eg, accept 0.5 as well as $\frac{1}{2}$
$[\boldsymbol{a}, \boldsymbol{b}] \quad$ Accept values between a and b inclusive.
$3.14 \ldots \quad$ Accept answers which begin 3.14 eg 3.14, 3.142, 3.149.

Use of brackets It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a candidate has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the candidate. In cases where there is no doubt that the answer has come from incorrect working then the candidate should be penalised.

Questions which ask candidates to show working

Instructions on marking will be given but usually marks are not awarded to candidates who show no working.

Questions which do not ask candidates to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Candidates often copy values from a question incorrectly. If the examiner thinks that the candidate has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Q Answer	Mark	Comments	
$\mathbf{1}$	$\frac{150}{500}(\times 100)$	M1	oe
	30	A1	

Q	Answer	Mark	Comments	
3	$\begin{aligned} & \frac{30}{100} \times 68 \text { or } 20.4 \text { or } 20 \\ & \text { or } \frac{70}{100} \times 68 \text { or } 47.6 \text { or } 48 \end{aligned}$	M1	oe	
	0.75×55 or 41(.25) or 41.3	M1	oe	
	$\begin{aligned} & 15000 \div 47.6 \text { or } 315 .(\ldots) \\ & \text { or } 15000 \div 48 \\ & \text { or }[312,316] \end{aligned}$	M1dep	oe Dependent on 1st M1	
	$\begin{aligned} & 12000 \div 41(.25) \\ & \text { or } 12000 \div 41.3 \\ & \text { or }[290,293] \end{aligned}$	M1dep	oe Dependent on 2nd M1	
	[312, 316] and [290, 293] and A	Q1		
	Additional Guidance			
	$68-20.4=45.6,15000 \div 45.6=329$ and 291 seen			$\begin{gathered} \text { M1M1M1M1 } \\ \text { Q0 } \end{gathered}$

4(a)	$\pi \times 0.7$ or $2 \times \pi \times 0.35$ or 2.19	M1	
	$[2.198,2.2]$	A1	Accept 0.7π

Q Answer	Mark	Comments	
$\mathbf{6 (a)}$ Never true B1			

6(b)	Always true	B1	

7	$9^{2}+16^{2}$ or $81+256$ or 337	M1		
	$\sqrt{9^{2}+16^{2}}$ or $\sqrt{81+256}$ or $\sqrt{337}$	M1dep		
	$18.35 \ldots$ or 18.36	A1		
	18.4	B1ft	ft their answer to 2 dp or bette	
	Additional Guidance			
	18.4 on its own			M1M1A1B1
	18.40			M1M1A1B0
	18.3			M1M1A0B0

Q	Answer	Mark	Comments	
8	Alternative method 1			
	$\tan 25\left(=\frac{x}{30}\right)$	M1		
	$30 \tan 25$ or [13.9, 14]	M1		
	$30 \tan 25 \div 3 \times 5$ or [4.6, 4.7] $\times 5$ or their height $\div 3 \times 5$	M1		
	[23.3, 23.4]	A1	Accept 23	
	Alternative method 2			
	$\frac{30}{\sin 65}=\frac{b}{\sin 25}$	M1		
	$\frac{30 \sin 25}{\sin 65} \text { or }[13.9,14]$	M1		
	$\begin{aligned} & \frac{30 \sin 25}{\sin 65} \div 3 \times 5 \\ & \text { or }[4.6,4.7] \times 5 \\ & \text { or their height } \div 3 \times 5 \end{aligned}$	M1		
	[23.3, 23.4]	A1	Accept 23	
	Alternative method 3			
	$30 \div 3 \times 5$ or 50	M1		
	$\tan 25\left(=\frac{x}{50}\right)$	M1		
	$50 \tan 25$	M1		
	[23.3, 23.4]	A1	Accept 23	
	Additional Guidance			
	$50 \tan 25$ or $\frac{50 \sin 25}{\sin 65}$			M1M1M1A0

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

9(a)	$(180-38) \div 2$	M1	
	71	A1	May be on diagram if no contradiction

9(b)	$O D E=90$ seen or implied or $C D O=25$ or $C O D=130$	B1	May be on diagram	
	$\begin{aligned} & D O E=50 \\ & \text { or } C D E=115 \\ & \text { or } 140 \text { seen } \end{aligned}$	M1	May be on diagram	
	40	A1		
	Additional Guidance			
	40 with no working seen			B1M1A1
	115 is B1M1 unless from clearly incorrect working eg 115 leading to an answer of 65 is M1 only			

Alternative method $\mathbf{1}$		
$0.8 \times 0.48 \times 20$ or 7.68	M 1	Units need not be consistent here
$0.5 \times 0.35 \times 20$ or 3.5	M 1	Units need not be consistent here
$7.68-3.5$ or 4.18	M 1	
$(4.18 \times 7.9=)$	A 1	
$[33.0,33.2]$		

Alternative method 2

$80 \times 48 \times 2000$ or 7680000	M1	Units need not be consistent here
$50 \times 35 \times 2000$ or 3500000	M1	Units need not be consistent here
$(7680000-3500000) \div 1000000$ or 4.18	M1	
$(4.18 \times 7.9=)$ $[33.0,33.2]$	A1	

Alternative method 3

0.8×0.48 or 0.384 and 0.50×0.35 or 0.175	M1	oe
$0.8 \times 0.48-0.50 \times 0.35$ or 0.209	M1dep	oe
their 0.209×20 or 4.18	M1	Units must be consistent here
$(4.18 \times 7.9=)$ $[33.0,33.2]$	A1	

Alternative method 4

80×48 or 3840 and 50×35 or 1750	M1	oe
$80 \times 48-50 \times 35$ or 2090	M1dep	oe
their $2090 \div 1000 \times 20$ or 4.18	M1	Units must be consistent here
$(4.18 \times 7.9=)$ $[33.0,33.2]$	A1	

Q Answer	Mark	Comments			
11(a)	1	0	4 in correct positions	B2	B1 for 2 correct

| | 6 or 7 of their points plotted correctly | M1 | $\pm \frac{1}{2}$ square |
| :--- | :--- | :---: | :--- | :--- |
| | Fully correct smooth curve | A1 | $\pm \frac{1}{2}$ square |
| | Additional Guidance | | |
| | Curve should not curve back in from outside $x=0$ or $x=6$ | | |
| | Curve should not have vertical end of more than 2 small squares | | |

12(b)	RHS or Right angle, Hypotenuse, Side	B1	oe eg RSH

Q Answer	Mark	Comments	
13(a) C B1			

13(b)	$y \alpha \sqrt{x}$ or $y=k \sqrt{x}$	B1	oe or $c y=\sqrt{x}$
	$\begin{aligned} & 36=k \sqrt{100} \\ & \text { or } k=3.6 \\ & \text { or } y=3.6 \sqrt{x} \end{aligned}$	M1	$\begin{aligned} & \text { oe } \\ & 36 c=\sqrt{100} \\ & \text { or } c=\frac{5}{18} \text { or } 0.277 \ldots \\ & \text { or } \frac{5}{18} y=\sqrt{x} \end{aligned}$
	$\begin{aligned} & 3.6 \times \sqrt{250} \\ & \text { or } 56.9(\ldots) \end{aligned}$	M1	oe $\sqrt{250} \div \frac{5}{18}$
	57	A1	

14	$1 / 2 \times 5 x \times 3 x \times \sin 30$ or Height $=3 x \times \sin 30$ or Height $=1.5 x$	M1	oe Height may be on the diagram
	M1	oe	
	M1	oe	
	$3.46(4 \ldots)$ or 3.5 or $\sqrt{12}$ or $2 \sqrt{3}$	A1	
	Additional Guidance		

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

15	180-112-46 or 22	M1	May be seen on the diagram
	$\frac{15}{\sin 112}=\frac{x}{\sin \text { their } 22}$	M1	Oe
	$\frac{15 \sin \text { their } 22}{\sin 112}$	M1	
	$6.06 \ldots$ or 6.1 or 6	A1	

16	$\begin{aligned} & \frac{-8 \pm \sqrt{8^{2}-4 \times 5 \times 2}}{2 \times 5} \\ & \text { or } \frac{-8 \pm \sqrt{24}}{10} \end{aligned}$	M1	Allow one error
	$\begin{aligned} & \frac{-8 \pm \sqrt{8^{2}-4 \times 5 \times 2}}{2 \times 5} \\ & \text { or } \frac{-8 \pm \sqrt{24}}{10} \end{aligned}$	A1	oe
	-0.3 and -1.3	A1	SC2 for -0.3 or -1.3

Q Answer	Mark	Comments	
17(a)	$\mathbf{a}+\frac{1}{2} \mathbf{b}$	B1	oe

17(b)	$\overrightarrow{Q S}=-\mathbf{a}+\mathbf{b}$ or $\overrightarrow{S Q}=\mathbf{a}-\mathbf{b}$	M1	oe
	$\overrightarrow{Q N}=-\frac{1}{3} \mathbf{a}+\frac{1}{3} \mathbf{b}$ or $\overrightarrow{S N}=\frac{2}{3} \mathbf{a}-\frac{2}{3} \mathbf{b}$	M1dep	oe
	$\overrightarrow{P N}=\frac{2}{3} \mathbf{a}+\frac{1}{3} \mathbf{b}$ or $\overrightarrow{N M}=\frac{1}{3} \mathbf{a}+\frac{1}{6} \mathbf{b}$	A1	oe
	Valid reason	Q1	Strand (ii) eg $P N$ is a multiple of $P M$ $P N$ is a multiple of $N M$ $\begin{aligned} & \overrightarrow{P N}=\frac{1}{3}(2 \mathbf{a}+\mathbf{b}) \text { and } \overrightarrow{P M}=\frac{1}{2}(2 \mathbf{a}+\mathbf{b}) \\ & \overrightarrow{P N}=\frac{2}{3}\left(\mathbf{a}+\frac{1}{2} \mathbf{b}\right) \text { and } \frac{2}{3} \overrightarrow{P M} \end{aligned}$

\mathbf{Q}	Answer	Mark	Comments

18	$4 \times \pi \times 6^{2}$ or 144π or 452.(...)	M1	oe	
	$\begin{aligned} & 2 \times \pi \times 9^{2} \text { or } 162 \pi \\ & \text { or }[508,509] \end{aligned}$	M1	oe	
	$\pi \times 9^{2} \text { or } 81 \pi$ or 254.(...) or $3 \times \pi \times 9^{2}$ or 243π or 763.(...)	M1	oe	
	144π : 243π	M1	$\begin{aligned} & \text { oe } \\ & \text { eg } \\ & 452 .(\ldots): 763 .(\ldots) \\ & 4 \times 6 \times 6: 3 \times 9 \times 9 \end{aligned}$	
	16:27	A1		
	Additional Guidance			
	243π alone implies			$\begin{gathered} \text { M0 M1 M1 } \\ \text { M0 A0 } \end{gathered}$

19	$\frac{1}{3} \times \pi \times 1.5^{2} \times 4$ or 3π	M1	
	$\frac{1}{3} \times \pi \times 1.5^{2} \times 4 \div 0.2$ or 15π	M1dep	oe
	A 1		

