General Certificate of Secondary Education June 2013

Mathematics
43603F
Unit 3 Foundation tier

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2013 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

M Method marks are awarded for a correct method which could lead to a correct answer.

A

B

Q
ft

SC

M dep A method mark dependent on a previous method mark being awarded.

B dep A mark that can only be awarded if a previous independent mark has been awarded.
oe Or equivalent. Accept answers that are equivalent. eg, accept 0.5 as well as $\frac{1}{2}$
$[a, b] \quad$ Accept values between a and b inclusive.
3.14... Allow answers which begin 3.14 eg 3.14, 3.142, 3.149.

Use of brackets
It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a candidate has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the candidate. In cases where there is no doubt that the answer has come from incorrect working then the candidate should be penalised.

Questions which ask candidates to show working

Instructions on marking will be given but usually marks are not awarded to candidates who show no working.

Questions which do not ask candidates to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Candidates often copy values from a question incorrectly. If the examiner thinks that the candidate has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Unit 3 Foundation Tier

$|$| Q Answer | Mark | Comments | |
| :---: | :--- | :---: | :--- |
| $\mathbf{1 a}$ | $(2,3)$ | B1 | |
| $\mathbf{1 b}$ | Point plotted 8 across and 3 up | B1 | Mark intent
 Label B can be missing
 SC1 For reversed coordinates (3, 2) in (a)
 and point plotted 3 across and 8 up |

2	34 identified	B1	$[33.5,34.5]$ Mark intention, e.g. label 34 or circle at 34 $1 / 2$ space either side
		B1	$[33.5,34.5]$ Mark intention, e.g. label 34 or circle at 34 $1 / 4$ space either side

3	Attempt to count squares or any area calculation e.g. 4×7	M1	Evidence of counting areas e.g. dots or numbers in shaded squares
	$[22,27]$	A2	A1 for $[19,22)$ or $(27,30]$

$\mathbf{4 a}$	Parallelogram	B1	Accept Quadrilateral
$\mathbf{4 y}$	Cuboid	B1	Accept Rectangular prism
	Cylinder	B1	Accept Circular prism Do not accept Tube

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

\($$
\begin{array}{|l|l|l|l|l|l|}\hline 5 & 80+45+70 & 0.8+0.45+0.7 & \text { M1 } & 200-(80+45+70) & \begin{array}{l}2-(0.8+0.45+ \\
0.7)\end{array}
$$

\)\cline { 2 - 5 } \& 195 \& 1.95 \& A1 \& 5 \& 0.05\end{array}$]$| Yes and |
| :--- |

\mathbf{Q}	Answer	Mark	Comments

6a	$5.99 \div 8$ or $599 \div 8$	M1	Condone $6 \div 8$ or $600 \div 8$
	$74.875(p)$ or $74(p)$ or $75(p)$	A1	Accept $£ 0.74$ or $£ 0.75$ or $£ 0.74875$ Allow any correct rounding or truncation giving an answer to 2 or more s.f.
6b	$3.99 \div 6$ or $399 \div 6$ or $\frac{6}{8} \times 5.99$ or $6 \times$ their 75 or $6 \times$ their 0.75	M1	oe Scaling method used with $£ 6$ eg 8 cost $£ 6,4$ cost $£ 3,2$ cost $£ 1.50$ 6 cost $£ 4.50$ $\begin{aligned} & £ 3.99 \text { + their } £ 1.50 \\ & £ 5.99 \text { - their } £ 1.50 \end{aligned}$
	(£) 0.665 or $66(.5)(p)$ or $67(p)$ or 4.4925 or 450 p or $£ 4.50$ and better value (Yes)	A1ft	6 pack is better value $7 p, 8 p$ or $9 p$ cheaper per battery $£ 5.49$ or $£ 4.49$ Comparison must be with consistent units ft their (a)
Alt 6b	$8 \div 5.99 \text { or } 8 \div 599$ and $6 \div 3.99$ or $6 \div 399$	M1	May be seen in (a) 6 costs $£ 2$ less (so extras are $£ 1$ each) Compares cost of 24 batteries $£ 5.99 \times 3 \text { and } £ 3.99 \times 4$
	1.3(3) and 1.5(0) and 6 batteries better value (Yes)	A1ft	£1 compared with 75p $£ 17.97$ and $£ 15.96$ and 6 batteries better value

7a	South	B1	Accept S
7b	Plymouth	B1	
7c	Alderney	B1	

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

$\mathbf{8 a}$	Yes Yes No Yes	B4	B1 For each correct answer
8b	90 and 60 in either order	B3	Accept [90, 95] or [60, 65] B2 For one correct B1 Any size that will take all 4 parcels (i.e. >95 and >65)

9a	$B \rightarrow \frac{1}{2}$	B1	Mark intention e.g.
	$C \rightarrow \frac{1}{4}$	B1	
	$D \rightarrow \frac{3}{4}$	B1	
9b	$\frac{9}{12}$	M1	Oe
	$\frac{3}{4}$	A1	SC1 for incorrect fraction fully simplified SC1 for $\frac{1}{4}$

$\left.\begin{array}{|l|l|l|l|}\hline 10 & (2,1) & \text { B2 } & \begin{array}{l}\text { Working may be on diagram } \\ \text { B1 for } x<6 \text { and } y=1 \\ \text { B1 for } x=2 \\ \text { or B1 for stating that horizontal distance } \\ \text { from } A \text { to } C \text { is } 4 \text { units }\end{array} \\ \text { or B1 for stating that horizontal distance } \\ \text { from } B \text { to } C \text { is } 8 \text { units }\end{array}\right]$

Q	Answer	Mark	Comments
11	$9+5$ or $2 \times 9-4$	M1	$2 x-4=x+5$
	14	A1	$2 x-4=x+5$ and $x=9$
	Both 14 and all sides equal Must state both sides are 14 if starting with $x=9$	Q1	Strand (iii) Must state both sides are 14 if starting with algebra to get to $x=9$
	Stating that angles are 90° or right angles or equal	Q1	Strand (ii)

12	7.6×2.4	M1	
	18.24 or 18.2	A1	
	18	B1 ft	ft their area provided at least $1 \mathrm{~d} . \mathrm{p}$. shown
	$30+10 \times$ their 18	M1	Oe
	210	A1 ft	ft their area 212.40 or 212 implies M1A1B0M1A1ft 212.4 implies M1A1B0M1A0

13a	$70+120+40$ or 230	M1	
	$360-(70+120+40)$ or 360 - their 230	M1dep	Oe
	130	A1	
13b	$B A C=25$	M1	oe May be on diagram in correct place
	180-115 or 65 seen	M1	May be on diagram in correct place
	90 seen	A1	Could be a right angle symbol on diagram at B or in working, and must have gained at least M1
	Right-angled (triangle) or Scalene	A1ft	Need to see the interior angles of the triangle and must have gained at least M1

14	Fully correct enlargement by scale factor 2	B2	B1 for enlargement with incorrect scale factor or B1 for two sides correct

Q	Answer	Mark	Comments
15	2.2 pounds $=1000$ grams seen or implied	M1	May be implied from working $1 \div 2.2 \text { (= } 0.45 \mathrm{~kg}) \text { (= } 1 \text { pound })$
	(1 pound =) $1000 \div 2.2$ (= $454 \ldots$ grams) or $1 \div 2.2 \times 1000$ [454, 455] or 450	M1	(1 gram $=$) $2.2 \div 1000$ ($=0.0022$ pound) $1 \div 2.2 \times 0.5$ ($=0.227 \ldots$ grams $)$ [0.227, 0.2275] or 0.225 or 0.230
	$\begin{aligned} & \left(\frac{1}{2} \text { pound }=\right) 1000 \div 2.2 \div 2 \\ & (=227.2 \ldots \text { grams }) \end{aligned}$ [227, 227.5] or 225 or 230	M1	$\begin{aligned} & 100 \text { grams }=2.2 \div 1000 \times 100 \\ & (=0.22 \text { pounds }) \\ & \text { or } 200 \text { grams }=2.2 \div 1000 \times 200 \\ & (=0.44 \text { pounds }) \\ & \text { or } 250 \text { grams }=2.2 \div 1000 \times 250 \\ & (=0.55 \text { pounds }) \\ & \text { or } 500 \text { grams }=2.2 \div 1000 \times 500 \\ & (=1.1 \text { pounds }) \end{aligned}$
	[227, 227.5] or 225 or 230 and 250 g stated	A1	0.55 (pounds) and 250 g stated 0.44 (pounds) and 250 g stated SC3 for e.g. 0.227 and 250 g stated
Alt 15	2 pounds $=1000$ grams seen or implied	M1	May be implied from working $1 \div 2 \text { (= } 0.5 \mathrm{~kg}) \text { (= } 1 \text { pound })$
	$\begin{aligned} & (1 \text { pound }=) 1000 \div 2 \\ & (=500 \text { grams }) \end{aligned}$ or $1 \div 2 \times 1000$ (= 500 grams)	M1	$\begin{aligned} & (1 \text { gram }=) 2 \div 1000(=0.002 \text { pound }) \\ & 1 \div 2 \times 0.5(=0.25 \text { grams }) \end{aligned}$
	$\begin{aligned} & \left(\frac{1}{2} \text { pound }=\right) 1000 \div 2 \div 2 \\ & (=250 \text { grams }) \end{aligned}$	M1	$\begin{aligned} & 100 \text { grams }=2 \div 1000 \times 100 \\ & \text { (= } 0.2 \text { pounds) } \\ & \text { or } 200 \text { grams }=2 \div 1000 \times 200 \\ & \text { (= } 0.4 \text { pounds) } \\ & \text { or } 250 \text { grams }=2 \div 1000 \times 250 \\ & (=0.5 \text { pounds) } \\ & \text { or } 500 \text { grams }=2 \div 1000 \times 500 \\ & (=1 \text { pound) } \end{aligned}$
	250 g stated	A1	SC3 for e.g. 0.25 and 250 g stated

\mathbf{Q}	Answer	Mark	Comments

16a	Correct reflection $(1,-3),(1,-5),(5,-3)$	B2	B1 for triangle reflected in line $x=-1$ B1 for triangle reflected in line $y=c$ B1 for correct points without the triangle drawn
$\mathbf{1 6 b}$	Rotation	B1	
	$90\left({ }^{\circ}\right)$ clockwise B1	oe $270\left({ }^{\circ}\right)$ anticlockwise Accept $\frac{1}{4}$ turn clockwise	
		B1	Oe
	Origin, O or $(0,0)$		

17	$\pi \times 3.5 \times 3.5$ or $3.14 \ldots \times 3.5 \times 3.5$ or $\pi \times 3.5^{2}$ or $3.14 \ldots \times 3.5^{2}$	M1	Oe
	$38.4(8 \ldots)$ or $38.4(6 \ldots)$	A 1	$\frac{49}{4} \pi$ or 12.25π or 12.3π
	38.5	B 1 ft	ft their answer of 2 d.p. or more

18	$x+2 x+90+138$ or states angles in quadrilateral $=360$	M1	oe Attempts to subtract from 360
	$x+2 x+90+138=360$ or $360-90-138$ or 132 seen	M1dep	Oe
	$x+2 x=360-90-138$ or $3 x=$ their 132 or their $132 \div 3$	M1dep	Oe
44	A1		

\mathbf{Q}	Answer	Mark	Comments

19a	2 or 2.0	B1	
$\mathbf{1 9 b}$	Circular arc drawn centre post	M1	
	Fully correct arc radius 5 cm	A1	± 2 mm tolerance
	$2 \mathrm{~cm}=1$ metre or $1 \mathrm{~cm}=0.5$ metre	M 1	Any equivalent scale Condone 1 square $=0.5$ metre
	$1 \mathrm{~cm}=50 \mathrm{~cm}$ or $2 \mathrm{~cm}=100 \mathrm{~cm}$ or $2: 100$	M1	Any order Common units
	$1: 50$	A1	$50: 1$ implies M1M1A0

$\mathbf{2 0 a}$	$-2,-3,-2$	B2	B1 for 1 or 2 correct
$\mathbf{2 0 b}$	their 5 points plotted	M1	Allow one error $\pm \frac{1}{2}$ square
	Fully correct with a smooth curve	A1	$\pm \frac{1}{2}$ square
$\mathbf{2 0 c}$	Correct reading at $y=0.5$	B1 ft	ft their curve $\pm \frac{1}{2}$ square
	Second correct reading at $y=0.5$	B1ft	ft their curve $\pm \frac{1}{2}$ square Award SC1 for [1.8, 1.9] and $[-1.9,-1.8]$ only if graph is missing.

