Surname	Other r			
Surname	Other r	lames		
Pearson	Centre Number	Candidate Number		
Edexcel GCSE				
Chemistry				
Unit C3: Chemistry	y in Action			
		Higher Tier		
		nigher her		
Wednesday 22 June 2016	6 – Morning	Paper Reference		
Wednesday 22 June 2016 Time: 1 hour	5 – Morning			

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 60.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- Questions labelled with an asterisk (*) are ones where the quality of your written communication will be assessed
 - you should take particular care with your spelling, punctuation and grammar, as well as the clarity of expression, on these questions.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over

The Periodic Table of the Elements

0 He helium 2	20 Ne neon 10	40 Ar argon 18	84 Kr krypton 36	131 Xe xenon 54	[222] Rn radon 86	fully
7	19 fluorine 9	35.5 CI chlorine 17	80 Br bromine 35	127 	[210] At astatine 85	orted but not
9	16 O Oxygen 8	32 S sulfur 16	79 Se selenium 34	128 Te tellurium 52	[209] Po polonium 84	ve been repo
5	14 N nitrogen 7	31 P phosphorus 15	75 As arsenic 33	122 Sb antimony 51	209 Bi bismuth 83	s 112-116 ha authenticated
4	12 C carbon 6	28 Si silicon 14	73 Ge germanium 32	119 Sn tin 50	207 Pb	Elements with atomic numbers 112-116 have been reported but not fully authenticated
8	11 boron 5	27 AI aluminium 13	70 Ga gallium 31	115 In indium 49	204 T thallium 81	ents with ato
!			65 Zn zinc 30	112 Cd cadmium 48	201 Hg mercury 80	Elemo
			63.5 Cu copper 29	108 Ag silver 47	197 Au gold 79	[272] Rg roentgenium
			59 nickel 28	106 Pd palladium 46	195 Pt platinum 78	[271] Ds damstadtium 110
			59 Co cobalt 27	103 Rh rhodium 45	192 Ir iridium 77	[268] Mt meitnerium 109
hydrogen			56 Fe iron 26	101 Ru ruthenium 44	190 Os osmium 76	[277] Hs hassium 108
			55 Mn manganese 25	[98] Tc technetium 43	186 Re rhenium 75	[264] Bh bohrium 107
	nass I ol Imber		52 Cr chromium 24	96 Mo molybdenum 42	184 W tungsten 74	[266] Sg seaborgium 106
Key	relative atomic mass atomic symbol name atomic (proton) number		51 V vanadium 23	93 Nb niobium 41	181 Ta tantalum 73	[262] Db dubnium 105
	relativ ato atomic		48 T titanium 22	91 Zr zirconium 40	178 Hf hafnium 72	[261] Rf rutherfordium 104
		•	45 Sc scandium 21	89 × yttrium 39	139 La * lanthanum 57	[227] Ac* actinium 89
2	9 Be beryllium 4	24 Mg magnesium 12	40 Ca calcium 20	88 Sr strontium 38	137 Ba barium 56	[226] Ra radium 88
~	7 Li lithium 3	23 Na sodium 11	39 K potassium 19	85 Rb rubidium 37	133 Cs caesium 55	[223] Fr francium 87

^{*} The lanthanoids (atomic numbers 58-71) and the actinoids (atomic numbers 90-103) have been omitted.

The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number.

BLANK PAGE

Questions begin on next page.

Answer ALL questions

Some questions must be answered with a cross in a box \boxtimes . If you change your mind about an answer, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes .

Hard and soft water

20 cm³ samples of waters, **A**, **B**, **C** and **D**, are tested for hardness by adding soap solution and shaking the mixture.

The soap solution is added until a permanent lather is formed.

Each sample of water is tested before and after boiling.

The results are shown.

water sample	volume of soap solution needed to form permanent lather / cm³			
water sample	before boiling	after boiling		
A	0.1	0.1		
В	5.0	2.0		
С	7.5	7.5		
D	3.0	0.1		

(a) (i) Which of the water samples is most likely to be pure water?

Put a cross (\boxtimes) in the box next to your answer.

(1)

- Α X
- X В
- C
- D X
- (ii) Which water sample is most likely to contain **only** temporary hardness?

Put a cross (☒) in the box next to your answer.

(1)

- X Α
- В X
- C X
- D X

	(2)
Explain one method which removes both temporary and permanent hardness from water.	(2)
d) Explain a disadvantage of having a domestic water supply that is hard.	
	(2)
	marks)

lons

- 2 (a) The qualitative test for chloride ions in solution is add dilute nitric acid then add silver nitrate solution
 - (i) Describe what you **see** if this test is carried out on a solution containing chloride ions.

(2)

(ii) What is the **ionic equation** for the reaction that occurs between silver nitrate solution and potassium chloride solution?


Put a cross (⋈) in the box next to your answer.

(1)

- \square **A** AgNO₃ + Cl⁻ \rightarrow AgCl + NO₃⁻
- B AgNO₃ + KCl → AgCl + KNO₃
- \square **C** Ag⁺ + KCl \rightarrow AgCl + K⁺
- \square **D** Ag^+ $+ Cl^- \rightarrow AqCl$
- (iii) Doctors often request blood tests. The tests they require to be carried out are quantitative tests.

Describe the difference between a **qualitative** and a **quantitative** test.

(2)

(b) Describe a test to show that aluminium iodide contains aluminium ions.	(3)
(Total for Question 2 = 8 ma	arks)

(3)

Ammonia

3 (a) Ammonia gas, NH₃, is formed by reacting ammonium chloride, NH₄Cl, with sodium hydroxide, NaOH.

$$NH_4CI + NaOH \rightarrow NaCI + H_2O + NH_3$$

In an experiment 4.0 g of sodium hydroxide react completely with ammonium chloride.

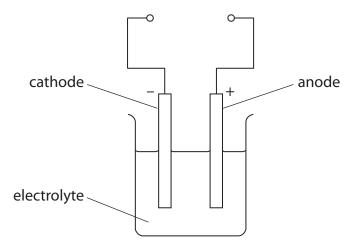
Calculate the maximum volume, in dm³, of ammonia gas formed at room temperature and pressure.

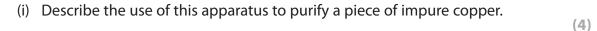
(relative atomic masses: H = 1.0, N = 14, O = 16, Na = 23, CI = 35.5 one mole of any gas occupies 24 dm³, measured at room temperature and pressure)

maximum volume of ammonia =dm³

	(Total for Question 3 = 9 m	arks)
	a	
(c)	When ammonia gas is dissolved in water, an alkaline solution is formed. State the name and the formula of the ion which causes the solution to be alkaline.	(2)
	(ii) Explain why a temperature of 450°C is used for this process even though a higher temperature would increase the rate of production of ammonia.	(2)
	(i) Explain what is meant by dynamic equilibrium .	(2)
	$N_2 + 3H_2 \rightleftharpoons 2NH_3$	
	The reaction of nitrogen with hydrogen to form ammonia is exothermic. The process is carried out at 450° C. This reaction can reach a dynamic equilibrium.	

Electrolysis


4 (a) Which of the following does **not** conduct electricity?


Put a cross (☒) in the box next to your answer.

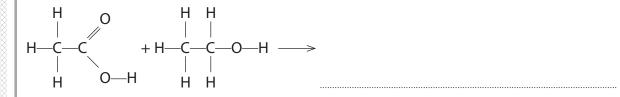
(1)

- A sodium chloride crystals
- B sodium chloride solution
- C molten sodium chloride
- **D** seawater
- (b) Impure copper is purified by electrolysis.

A diagram of the apparatus that can be used is shown.

(ii) During the electrolysis a deposit forms under the anode. Explain how this deposit forms.	(2)
(c) (i) In the electrolysis of molten lead bromide, $PbBr_2$, the half equation for the reaction occurring at the cathode is $Pb^{2+} + 2 e \rightarrow Pb$ Explain what type of reaction is shown in this equation.	(2)
(ii) Bromine, Br_{2} , is formed at the anode. Write the half equation for the reaction occurring at the anode. (Total for Question 4 = 11 r	(2)

BLANK PAGE


Ethanoic acid

5 (a) (i) Ethanoic acid, CH₃COOH, reacts with ethanol to form ethyl ethanoate and water.

Complete the equation for the reaction by adding the formula of ethyl ethanoate.

(1)

+ H-O-H

(ii) Ethanoic acid is a typical acid.

State what you would **see** if solid calcium carbonate is added to some dilute ethanoic acid.

(1)

(b) Complete the sentence by putting a cross (☒) in the box next to your answer.

(1)

1.0 dm 3 of ethanoic acid solution, CH $_3$ COOH, contains 6.0 g of ethanoic acid. (relative molecular mass: CH $_3$ COOH = 60)

The concentration of ethanoic acid, in mol dm⁻³, is

- **A** 0.1
- **B** 0.6
- **∠ C** 1.0
- **D** 10.0

*(c)	Sodium ethanoate solution can be formed by neutralising sodium hydroxide solution with dilute ethanoic acid.	
	Pure crystals of sodium ethanoate can be obtained from this solution.	
	The volumes of sodium hydroxide solution and dilute ethanoic acid required to form the pure sodium ethanoate solution must be found by titration.	
	Describe how you would prepare a pure solution of sodium ethanoate from sodium hydroxide solution and dilute ethanoic acid, and how you would obtain pure, dry sodium ethanoate crystals from this solution.	(6)
•••••		

(d) In an experiment 25.0 cm³ of 0.0100 mol dm⁻³ ethanoic acid, CH₃COOH, was titrated with 0.0200 mol dm⁻³ sodium hydroxide solution, NaOH.

$$CH_3COOH + NaOH \rightarrow CH_3COONa + H_2O$$

Calculate the volume, in cm³, of 0.0200 mol dm⁻³ sodium hydroxide solution needed to neutralise the ethanoic acid in this experiment.

(3)

volume of sodium hydroxide solution needed =cm³

(Total for Question 5 = 12 marks)

Organic chemistry

6 (a) Complete the sentence by putting a cross (⋈) in the box next to your answer.

(1)

Butane is an alkane.

The formula of a molecule of butane is

- A C₃H₆
- \boxtimes **B** C_4H_{10}
- □ C₄H₈
- (b) Ethanol is an alcohol.

Ethanol is present in various alcoholic drinks, such as wine, beer and whisky.

(i) It is dangerous to drive after having an alcoholic drink.

Suggest why it is more dangerous to drive a car after drinking 25 cm³ of whisky than it is after drinking 25 cm³ of beer.

(2)

(ii) If a bottle of wine is left open to the air, some of the ethanol is converted into ethanoic acid.

Give the name of the homologous series in which ethanoic acid is found.

(1)

(c) Propanol, C₃H₇OH, can be dehydrated to form propene.

Write the balanced equation for this reaction.

(2)

*(d) The table gives information about four substances, **A**, **B**, **C** and **D**.

The substances, in no particular order, are ethane, ethanoic acid, ethanol and ethene.

	substance A	substance B	substance C	substance D
symbols of all atoms found in the formula	СН	СНО	СНО	СН
oxidises when left in the air	no	yes	no	no
observation when magnesium added	no reaction	no reaction	effervescence	no reaction
observation when added to sodium carbonate solution	no reaction	no reaction	effervescence	no reaction
observation when bromine water added	orange to colourless	stays orange	stays orange	stays orange
can be polymerised	yes	no	no	no

in the table to identify them			
in the table to identify them.	(6)		

(Total for Question 6 = 12 marks)
TOTAL FOR DADER - 60 MARKS

BLANK PAGE

