edexcel

Mark Scheme (Results)
Summer 2016

Pearson Edexcel GCSE in Chemistry (5CH2F/01) Paper 01 Unit C2: Discovering Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www. pearson.com/uk

Summer 2016
Publications Code 5CH2F_01_1606_MS
All the material in this publication is copyright
© Pearson Education Ltd 2016

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- For questions worth more than one mark, the answer column shows how partial credit can be allocated. This has been done by the inclusion of part marks eg (1).
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- Write legibly, with accurate spelling, grammar and punctuation in order to make the meaning clear
- \quad Select and use a form and style of writing appropriate to purpose and to complex subject matter
- Organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities.
Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (a) (\mathbf { i })}$	D		$\mathbf{(1)}$

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (a) (i i)}$	B		(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (a) (\text { iii) }}$	a description including three of the following e draw on start line (in pencil) estated distance up from bottom put spots of \{drink/sample\} on paper (in positions shown) - allow spots to dry and repeat solvent level below start line OWTTE		(3)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (b)}$	A description including - allow layers to \{form / separate\} / liquids to separate (1)	(2)	
- operate tap/OWTTE (1)			
-run out \{liquid X/most dense liquid\} from the bottom OWTTE(1) pour liquid Y from the top (1)	ignore liquid Y through tap		

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (c)}$	fractional (1) distillation (1)	allow max 1 for fractionation	(2)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{2 (a)}$	+1	positive / +ve / 1+ / + / one plus	(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{2 (b)}$	A 11		(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{2 (c) (i)}$	2.8 .1	allow description giving numbers	(1)

Question Number	Answer	Acceptable answers	Mark		
2(c)(ii)	An explanation linking		(2)		
	• 1 electron (1)				
(in the) \{outer/last/final/end\}					
\{shell/energy level\} (1)				\quad	allow the group number is the
:---					
same as the number of electrons					
on the outer shell (1)	\quad				
:---					

Question Number	Answer	Acceptable answers	Mark
$\mathbf{2 (d) (i)}$	\mathbf{C} selenium, Se		(1)

Question Number	Answer	Acceptable answers	Mark
2(d)(ii)	same number of shells (contain electrons) (1)	with each successive element, one electron is added to same shell	(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{3 (a) (\mathbf { i })}$	C lead iodide		$\mathbf{(1)}$

Question Number	Answer	Acceptable answers	Mark
3(a)(ii)	lead + potassium \rightarrow lead + potassium nitrate iodide iodide nitrate LHS 1 mark RHS 1 mark	ignore state symbols allow reactants in any order allow products in any order allow $=$ instead of arrow if formula used they must be correct ignore formula if word and formulae are given for any substance do not allow a mixture of formula for both marks. e.g. lead nitrate + potassium iodide $\rightarrow \mathrm{PbI}_{2}$ $+\mathrm{KNO}_{3}$ scores 1 mark. iodine for iodide $=$ 1mark max	(2)

Question Number	Answer		Acceptable answer	Mark	
$\mathbf{3 (a) (\text { iii) }}$	\boxed{B}	\boxed{E}	A	\boxed{D}	\boxed{C}

Question Number	Answer	Acceptable answers	Mark
3(b)	one single line from sodium to yellow (1) One single line from potassium to lilac (1) Do not accept multiple lines		(2)

$\left.\begin{array}{|l|l|l|l|}\hline \begin{array}{l}\text { Question } \\ \text { Number }\end{array} & \text { Answer } & \text { Acceptable answers } & \text { Mark } \\ \hline \mathbf{3 (c) (i)} & \mathrm{KCl} & \text { CIK } & \text { (1) } \\ \text { reject } \mathrm{KCL} / \mathrm{kcL} / \mathrm{Kcl} \\ \text { ignore charges unless incorrect } \\ \text { 'correct' charges would be } \mathrm{K}^{+} \mathrm{Cl}^{-}\end{array}\right]$

Question Number	Answer	Acceptable answers	Mark
3(c)(ii)	an explanation linking \bullet gain (of electrons)(1) \{one/an\} electron (1)	reference to sharing electrons/covalent bonding $=0$ marks	(2)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{4 (a)}$	$40+12+(16 \times 3)$ (1) (= 100)	$100(\mathbf{1)}$ with \{no/incorrect\} working	$40+12+(16 \times 3)$ with \{no/wrong\} answer (1)

Question Number	Answer	Acceptable answers	Mark
4(b)	A $1: 1$		(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{4 (c)}$	$\mathrm{Al}_{2} \mathrm{O}_{3}$	Ignore $\mathrm{al}_{2} \mathrm{O}_{3} / \mathrm{Al}^{2} \mathrm{O}^{3} / \mathrm{AL}_{2} \mathrm{O}_{3} /$ $\mathrm{Al} 2 \mathrm{O}^{2}$ etc	(1)

Question Number	Answer	Acceptable answers	Mark
4(d)	C $\quad \mathrm{C}_{2} \mathrm{H}_{4}$		(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{4 (e) (i)}$	$\frac{7.2}{9.0}$ (1)	0.8 (1)	(2)
their fraction $\times 100$ (1) (=80\%)	$80(\%)$ with \{no/incorrect \} working (2) correct working with \{no/wrong\} answer (2)		

Question Number	Answer	Acceptable answers	Mark
4(e)(ii)	An explanation linking two of the following		(2)
	(incomplete reaction (1) practical losses during experiment (1) side reactions taking place (1)		
		allow inaccurate measurements (1)	

Question Number	Answer	Acceptable answers	Mark
$\mathbf{4 (e) (i i i)}$	$\frac{65}{81} \mathbf{(1)}$ their fraction $\times 100$ (1) $(=80.2 \%)$	0.802 or 0.8 (1) $80 / 80.2$ with $\{$ no/incorrect $\}$ working $\mathbf{(2)}$ correct working with \{no/wrong\} answer (2)	(2)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{5 (a) (\mathbf { i })}$	A description including two of the following - fizzes /bubbles		(2)
	- moves around surface - of water floats/on surface of water - disappears	dissolves	

Question Number	Answer	Acceptable answers	Mark
$\mathbf{5 (a) (i i)}$	B flammable		(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{5 (b) (i)}$	An explanation linking ((delocalised/free) electrons (1) (electrons) move/flow (to carry the current) (1)	reject ions moving	(2)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{5 (b) (i i)}$	magnesium salts colourless / iron salts coloured	magnesium salts are white	(1)
		any correct colour of iron salt allow colour	

Question Number		Indicative Content	Mark
QWC	*5(c)	A explanation including some of the following points Reaction of chlorine with potassium bromide - colour change seen - bromide ions are displaced - yellow-orange colour of bromine appears in solution - chlorine is more reactive than bromine - chlorine + potassium bromide \rightarrow bromine + potassium chloride Reaction of chlorine with potassium iodide - colour change seen - iodide ions are displaced - brown colour of iodine appears in solution (allow any colour from yellow to dark red) - chlorine is more reactive than iodine - chlorine + potassium iodide \rightarrow iodine + potassium chloride Reaction of bromine with potassium iodide - colour change seen - iodide ions are displaced - solution darkens/orange-brown colour seen (allow any colour from yellow to dark red) - bromine is more reactive than iodine - bromine + potassium iodide \rightarrow iodine + potassium bromide Conclusions - more reactive halogens displace less reactive halogens - order of reactivity is that chlorine is the most reactive of the three, followed by bromine and then iodine.	(6)
Level	0	No rewardable content	
1	1-2	a limited description e.g. There is a colour change where there is a react chlorine displaces bromide ions. Spelling, punctuation and grammar a used with limited accuracy	tion,
2	3-4	a simple description e.g. iodine is the least reactive as iodide ions are displaced by both bromine and chlorine, a colour change is seen in ea these reactions. Showing some evidence of clarity and organisation and scientific terminology appropriately spelling, punctuation and grammar are used with some accuracy	h of d uses
3	5-6	a detailed description e.g. chlorine is most reactive as it displaces brom and iodide ions causing a colour change in each case, bromine is mor reactive than iodine as bromine displace iodide ions. The answer communicates ideas clearly and coherently uses a range scientific terminology accurately. Spelling, punctuation and grammar used with few errors.	

Question Number	Answer	Acceptable answers	Mark
$\mathbf{6 (a)}$	An explanation linking two of the following		(2)
	- (reaction) Q (1) temperature increase (of 19 ${ }^{\circ} \mathrm{C}$ (1)	heat (energy) \{released /given out (1) do not allow just 'heat increases'	If reaction P or R is identified as the exothermic reaction max 1 mark for heat (energy) released

Question Number	Answer	Acceptable answers	Mark
$\mathbf{6 (b) (i)}$	A cross in the circle furthest to the left		(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{6 (b) (i i)}$	similar curve to original but lower starting at origin (1)		(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{6 (c)}$	An description including		(2)
(powder has) a higher surface area (1) more (frequent particle) collisions (1)			

Question Number		Indicative Content	Mark
QWC	*6(d)	A description including some of the following points Practical detail for increased rate - measure volume of hydrogen peroxide solution / stated volume - collect the gas in a \{gas syringe / measuring cylinder over water / tube over water\} - time for the reaction to be completed / fixed volume of gas to be collected - measure \{amount/volume\} of oxygen produced - no catalyst present Practical detail for mass of catalyst - repeat experiment but keeping everything the same - but with addition of manganese(IV) oxide / catalyst - take known mass of manganese(IV) oxide - after reaction filter (catalyst off) - wash (catalyst) - dry (catalyst) - find mass of catalyst Results - small volume of \{gas / oxygen\} produced before addition of catalyst - larger volume of gas produced with catalyst in specified time - this shows that the rate has increased on adding catalyst - this shows that the mass of catalyst is unchanged	(6)
Level	0	No rewardable content	
1	1-2	- a limited description of rate or mass effect e.g. repeat exper again but add catalyst to the hydrogen peroxide solution - the answer communicates ideas using simple language and limited scientific terminology - spelling, punctuation and grammar are used with limited accur	ment ses uracy
2	3-4	- a description of the rate experiments or mass effect experim - the answer communicates ideas showing some evidence of c and organisation and uses scientific terminology appropriate - spelling, punctuation and grammar are used with some accu	ents. larity y racy
3	5-6	a detailed description of the rate experiments or mass effect experiments and a discussion of the results of the experimen regards to either mass or rate OR a simple description of the and mass effect experiments - The answer communicates ideas clearly and coherently uses range of scientific terminology accurately - spelling, punctuation and grammar are used with few errors	with rate

