Centre Number			Candidate Number		
Surname					
Other Names					
Candidate Signature					

General Certificate of Secondary Education Higher Tier June 2015

CH2HP

Additional Science Unit Chemistry C2

ChemistryUnit Chemistry C2

Thursday 14 May 2015 9.00 am to 10.00 am

For this paper you must have:

- a ruler
- the Chemistry Data Sheet (enclosed).

You may use a calculator.

Time allowed

• 1 hour

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 60.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.
- Question 2(c) should be answered in continuous prose.
 - In this question you will be marked on your ability to:
 - use good English
 - organise information clearly
 - use specialist vocabulary where appropriate.

Advice

• In all calculations, show clearly how you work out your answer.

Answer all questions in the spaces provided.

1 A student investigated the rate of reaction between calcium carbonate (marble chips) and hydrochloric acid.

The student used the apparatus shown in **Figure 1**.

Figure 1

The student:

- recorded the volume of gas collected every 5 seconds
- repeated the experiment using hydrochloric acid at different temperatures.

The equation for the reaction is:

$$\mathsf{CaCO}_3(\mathsf{s}) \ + \ 2\,\mathsf{HCl}(\mathsf{aq}) \ \longrightarrow \ \mathsf{CaCl}_2(\mathsf{aq}) \ + \ \mathsf{H}_2\mathsf{O}(\mathsf{I}) \ + \ \mathsf{CO}_2(\mathsf{g})$$

1 (a) The student plotted results for the hydrochloric acid at 20 °C and 40 °C on a graph.

Figure 2 shows the student's graph.

Figure 2

Use information from Figure 2 to answer these questions.

1 (a) (i) State **one** conclusion the student could make about the effect of temperature on the rate of the reaction.

[1 mark]

1 (a) (ii) Give one reason why the student could make this conclusion.

[1 mark]

1 (a) (iii) For the hydrochloric acid at 60 °C the student had collected 30 cm³ after 15 seconds.

Calculate the average rate of reaction from 0 to 15 seconds.

[1 mark]

Rate of reaction = cm³ per second

Turn over ▶

1 (b) (i) Which two variables should the student keep constant? [2 marks] Tick (') two boxes. Amount of water in the trough Concentration of acid Mass of marble chips Size of marble chips Volume of measuring cylinder 1 (b) (ii) Explain, in terms of particles and collisions, the effect that increasing the surface area of the marble chips has on the rate of reaction. [2 marks]	1 (b)	The student then investigated how the surface area of marble chips affected of reaction.	I the rate
Amount of water in the trough Concentration of acid Mass of marble chips Size of marble chips Volume of measuring cylinder 1 (b) (ii) Explain, in terms of particles and collisions, the effect that increasing the surface area of the marble chips has on the rate of reaction. [2 marks] 1 (c) Calcium carbonate is a catalyst for the industrial production of biodiesel. Give one reason why using a catalyst reduces costs.	1 (b) (i)	Which two variables should the student keep constant?	[2 marks]
Concentration of acid Mass of marble chips Size of marble chips Volume of measuring cylinder 1 (b) (ii) Explain, in terms of particles and collisions, the effect that increasing the surface area of the marble chips has on the rate of reaction. [2 marks] 1 (c) Calcium carbonate is a catalyst for the industrial production of biodiesel. Give one reason why using a catalyst reduces costs.		Tick (✓) two boxes.	
Mass of marble chips Size of marble chips Volume of measuring cylinder 1 (b) (ii) Explain, in terms of particles and collisions, the effect that increasing the surface area of the marble chips has on the rate of reaction. [2 marks] 1 (c) Calcium carbonate is a catalyst for the industrial production of biodiesel. Give one reason why using a catalyst reduces costs.		Amount of water in the trough	
Size of marble chips Volume of measuring cylinder 1 (b) (ii) Explain, in terms of particles and collisions, the effect that increasing the surface area of the marble chips has on the rate of reaction. [2 marks]		Concentration of acid	
Volume of measuring cylinder 1 (b) (ii) Explain, in terms of particles and collisions, the effect that increasing the surface area of the marble chips has on the rate of reaction. [2 marks] 1 (c) Calcium carbonate is a catalyst for the industrial production of biodiesel. Give one reason why using a catalyst reduces costs.		Mass of marble chips	
1 (b) (ii) Explain, in terms of particles and collisions, the effect that increasing the surface area of the marble chips has on the rate of reaction. [2 marks] 1 (c) Calcium carbonate is a catalyst for the industrial production of biodiesel. Give one reason why using a catalyst reduces costs.		Size of marble chips	
of the marble chips has on the rate of reaction. [2 marks] 1 (c) Calcium carbonate is a catalyst for the industrial production of biodiesel. Give one reason why using a catalyst reduces costs.		Volume of measuring cylinder	
Give one reason why using a catalyst reduces costs.	1 (b) (ii)		
Give one reason why using a catalyst reduces costs.			
Give one reason why using a catalyst reduces costs.			
Give one reason why using a catalyst reduces costs.			
	1 (c)	Calcium carbonate is a catalyst for the industrial production of biodiesel.	
		Give one reason why using a catalyst reduces costs.	[1 mark]
			<u> </u>

2 A student investigated the temperature change when zinc reacts with copper sulfate solution.

The student used a different concentration of copper sulfate solution for each experiment.

The student used the apparatus shown in **Figure 3**.

Figure 3

The student:

- measured 50 cm³ copper sulfate solution into a glass beaker
- measured the temperature of the copper sulfate solution
- added 2.3 g zinc
- measured the highest temperature
- repeated the experiment using copper sulfate solution with different concentrations.

The equation for the reaction is:

$$Zn(s)$$
 + $CuSO_4(aq)$ \longrightarrow $Cu(s)$ + $ZnSO_4(aq)$

2 (a) The thermometer reading changes during the reaction.

Give **one** other change the student could **see** during the reaction.

	_

Question 2 continues on the next page

Turn over ▶

[1 mark]

2 (b)	Suggest one improvement the student could make to the apparatus in Figure 3 .					
	Give a reason why this improves the investigation.	[2 marks]				
	Improvement					
	Reason					

2 (c) In this question you will be assessed on using good English, organising information clearly and using specialist terms where appropriate.

The student's results are shown in **Table 1**.

Table 1

Experiment number	Concentration of copper sulfate in moles per dm ³	Increase in temperature in °C
1	0.1	5
2	0.2	10
3	0.3	12
4	0.4	20
5	0.5	25
6	0.6	30
7	0.7	35
8	0.8	35
9	0.9	35
10	1.0	35

Descr	ribe and explain the trends shown in the student's results.	[6 m
Extra	space	

9

Turn over ▶

3	This question is about metals and alloys.
3 (a)	Explain how electricity is conducted in a metal.
	To gain full marks you must include a description of the structure and bonding of a metal.
	[4 marks]
2 /h)	Describe how the structure of an allow is different from the structure of a numerostal
3 (b)	Describe how the structure of an alloy is different from the structure of a pure metal. [2 marks]
3 (c)	Alloys are used to make dental braces and coins.
3 (c) (i)	Nitinol is an alloy used in dental braces.
	Why is Nitinol used in dental braces? [1 mark]

3 (c) (ii)	Suggest one reason why coins are not made of pure copper.	
	Do not give cost as a reason.	[1 mark]
3 (c) (iii)	Some coins are made from an alloy of aluminium.	
	Complete the sentence.	[1 mark]
	Aluminium is manufactured by the electrolysis of a molten mixture of	
	cryolite and	
3 (c) (iv)	Banks keep coins in poly(ethene) bags. These bags are made from low density poly(ethene).	/
	High density poly(ethene) can also be made from the same monomer.	
	How can the same reaction produce two different products?	[1 mark]
3 (d)	Give two reasons why instrumental methods of analysis are used to detect imperin metals.	
		[1 mark]

11

4	This question is about atoms and isotopes.
4 (a)	Atoms contain protons, neutrons and electrons. A lithium atom has the symbol $^{7}_{3}\mathrm{Li}$
	Explain, in terms of sub-atomic particles, why the mass number of this lithium atom is 7. [3 marks]
4 (b)	Amounts of substances can be described in different ways.
	Complete the sentences. [2 marks]
	One mole of a substance is the relative formula mass in
	The relative atomic mass of an element compares the mass of an atom of an element
	with the mass of an atom of
4 (c)	Two isotopes of oxygen are ${}^{18}_{8}\mathrm{O}$ and ${}^{16}_{8}\mathrm{O}$
	Describe the similarities and differences between the isotopes $^{18}_{\ 8}$ O and $^{16}_{\ 8}$ O
	You should refer to the numbers of sub-atomic particles in each isotope. [3 marks]

Turn over ▶

8

5	This question is about compounds.	
5 (a)	Table 2 gives information about the solubility of some compounds.	
	Table 2	
	Soluble compounds	
	All potassium and sodium salts	
	All nitrates	
	Chlorides, bromides and iodides, except those of silver and lead	
	Use information from Table 2 to answer these questions.	
5 (a) (i)	Name a soluble compound that contains silver ions.	[1 mark]
5 (a) (ii)	Name a soluble compound that contains carbonate ions.	[1 mark]
5 (b)	Metal oxides react with acids to make salts.	
	What type of compound is a metal oxide?	[1 mark]

5 (c)	Lead nitrate solution is produced by reacting lead oxide with nitric acid.	
5 (c) (i)	State how solid lead nitrate can be obtained from lead nitrate solution. [1 mar	k]
5 (c) (ii)	Balance the equation for the reaction.	
	PbO + HNO_3 \longrightarrow $Pb(NO_3)_2$ + H_2O	•
5 (c) (iii)	Give the total number of atoms in the formula ${\rm Pb(NO_3)_2}$ [1 mar	k]
5 (d)	An oxide of lead that does not have the formula PbO contains 6.21 g of lead and 0.72 g of oxygen.	
	Calculate the empirical formula of this lead oxide.	
	Relative atomic masses (A_r): O = 16; Pb = 207	
	You must show your working to gain full marks. [4 mark	s]
	Empirical formula =	

10

6	This question is about sodium chloride and iodine.
6 (a)	Describe the structure and bonding in sodium chloride. [4 marks]
6 (b)	When sodium chloride solution is electrolysed, one product is chlorine.
	Name the two other products from the electrolysis of sodium chloride solution. [2 marks]
6 (c)	Many people do not have enough iodine in their diet.
	Sodium chloride is added to many types of food. Some scientists recommend that sodium chloride should have a compound of iodine added.
	Give one ethical reason why a compound of iodine should not be added to sodium chloride used in food.
	[1 mark]

6 (d) The bonding in iodine is similar to the bonding in chlorine. 6 (d) (i) Complete **Figure 4** to show the bonding in iodine. Show the outer electrons only. [2 marks] Figure 4 Ι 6 (d) (ii) Explain why iodine has a low melting point. [3 marks] 6 (d) (iii) Explain, in terms of particles, why liquid iodine does not conduct electricity. [2 marks]

14

END OF QUESTIONS

