Centre Number			Candidate Number		
Surname					
Other Names					
Candidate Signature					

General Certificate of Secondary Education Foundation Tier June 2015

CH2FP

Additional Science

Unit Chemistry C2

ChemistryUnit Chemistry C2

Thursday 14 May 2015 9.00 am to 10.00 am

For this paper you must have:

- a ruler
- the Chemistry Data Sheet (enclosed).

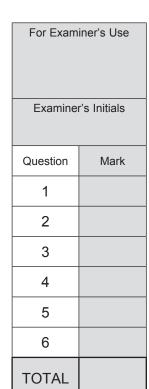
You may use a calculator.

Time allowed

• 1 hour

Instructions

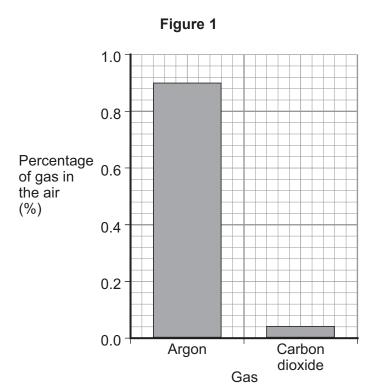
- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.


Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 60.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.
- Question 6(c) should be answered in continuous prose.
 - In this question you will be marked on your ability to:
 - use good English
 - organise information clearly
 - use specialist vocabulary where appropriate.

Advice

• In all calculations, show clearly how you work out your answer.



		Answer all qu	uestions in the sp	paces provided.	
1	This question is about carbon and gases in the air.				
1 (a)	Carbon atoms	have protons,	neutrons and ele	ectrons.	
	Complete Tab	ole 1 by writing	the relative mas	s of a neutron an	d an electron. [2 marks]
			Table 1		[2 marks]
		Name of parti		Relative mass	
		proton		1	_
	_	neutron		·	_
		electron			_
1 (b)	What is the to	tal number of p	rotons and neuti	ons in an atom c	alled? [1 mark]
	Tick (✓) one k	oox.			
	The atomic nu	umber			
	The mass nur	mber			
	One mole of the	he atom			
1 (c)	An atom of ca	rbon has six ele	ectrons.		
	Which structure	re, A , B or C , re	epresents the ele	ectronic structure	of the carbon atom? [1 mark]
	Structur	e A	Structure B	Str	ucture C
	XX		XX		*
	***		* **	* * (* * * * * * * * * * * * * * * * * * *
	The carbon at	om is structure			

1 (d)	Carbon reacts with oxygen to produce carbon dioxide (CO ₂).	
1 (d) (i)	How many different elements are in one molecule of carbon dioxide?	[1 mark]
1 (d) (ii)	What is the total number of atoms in one molecule of carbon dioxide?	[1 mark]
1 (e)	Sometimes carbon reacts with oxygen to produce carbon monoxide (CO).	
1 (e) (i)	Calculate the relative formula mass (M_r) of carbon monoxide.	
	Relative atomic masses (A_r): C = 12; O = 16	[1 mark]
	$M_{\rm r}$ of carbon monoxide =	
1 (e) (ii)	Calculate the percentage by mass of carbon in carbon monoxide.	[1 mark]
	Percentage by mass of carbon in carbon monoxide =	%
	Question 1 continues on the next page	

- 1 (f) Carbon dioxide is one of the gases in the air.
- 1 (f) (i) Figure 1 shows the percentage of argon and the percentage of carbon dioxide in the air.

What is the percentage of argon in the air?

[1 mark]

Percentage of argon = %

1 (f) (ii) An instrumental method is used to measure the amount of carbon dioxide in the air.

Give one reason for using an instrumental method.

[1 mark]

10

- **2** This question is about salts.
- 2 (a) Salt (sodium chloride) is added to many types of food.

Sodium chloride is produced by reacting sodium with chlorine.

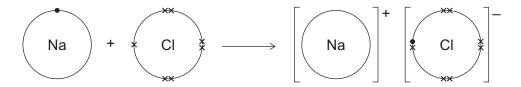

sodium + chlorine \longrightarrow sodium chloride

Figure 2 shows what happens to atoms of sodium and chlorine in this reaction.

The dots (•) and crosses (×) represent electrons.

Only the outer electrons are shown.

Figure 2

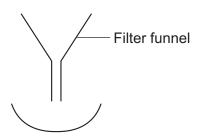
Describe, in terms of electrons, what happens when a sodium atom reacts with a chlorine atom to produce sodium chloride.

[3 marks	

Question 2 continues on the next page

2 (b)	Lack of iodine can affect the learning ability of children.
	One idea is that salt (sodium chloride) should have iodine added.
2 (b) (i)	lodine consists of simple molecules.
	What is a property of substances that have simple molecules? [1 mark]
	Tick (✓) one box.
	Have no overall electric charge
	Have high boiling points
	Have giant covalent structures
2 (b) (ii)	Which one of the following questions cannot be answered by science alone? [2 marks]
	Tick (✓) one box.
	How much sodium chloride is in food?
	What harm does a lack of iodine do?
	Should iodine be added to salt in food?
	Give one reason why this question cannot be answered by science alone.
2 (c) 2 (c) (i)	A student produced the salt ammonium nitrate by adding an acid to ammonia solution. Name the acid used.
	[1 mark]

2 (c) (ii)	Use the	correct answer	from the	box to complet	e the sentence.	[1 mark]
		an acid		an alkali	a salt	
	Ammoni	a solution (amn	nonium hy	/droxide) is		
2 (c) (iii)	The stud		w drops o	f a solution wh	ich changed colour v	when the reaction
	Complet	e the sentence.				[1 mark]
	The solu	tion added is a	n			
2 (d)	Farmers	buy solid amm	onium nit	rate in poly(eth	ene) sacks.	
2 (d) (i)	How is s	olid ammonium	nitrate m	nade from a sol	ution of ammonium r	nitrate? [1 mark]
	Tick (✓)	one box.				
	Crystallis	sation				
	Decomp	osition				
	Electroly	rsis				
2 (d) (ii)	Why do	farmers use am	nmonium	nitrate on their	fields?	[1 mark]
2 (d) (iii)	The prop	perties of poly(e	ethene) de	epend on the re	action conditions wh	en it is made.
	State on	e reaction cond	dition that	can be change	d when making poly	(ethene). [1 mark]


3	Lead iodide is	s an insoluble salt.		
3 (a)	What type of	substance is lead i	odide?	[1 mark]
	Tick (✓) one	box.		
	An element			
	A mixture			
	A compound			
3 (b)	A student pro	duced lead iodide	by a precipitation reaction.	
	Use the corre	ect answers from th	e box to complete the word e	equation. [2 marks]
lea	d bromide	lead nitrate	potassium bromide	potassium iodide
		+	\longrightarrow lead in	odide + potassium nitrate

3 (c) The student wanted to separate the precipitate of lead iodide from the solution by using filtration.

The student used the apparatus shown in **Figure 3**.

Figure 3

Explain why the apparatus in **Figure 3** would **not** separate the lead iodide from the mixture.

[2 r	marks]

- **3 (d)** The student expected to get 5 g of lead iodide but only got 3 g.
- **3 (d) (i)** The student did this calculation.

$$\frac{3}{5}$$
 × 100

Use the correct answer from the box to complete the sentence.

[1 mark]

	mass of one mole	percentage yield	relative formula mass	i
	The student calculated the			
3 (d) (ii)	Give one reason why the ma	ass the student got was les	•	nark]

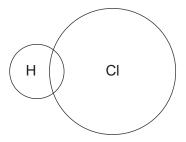
4	This question is about electrolysis.
4 (a)	Metal spoons can be coated with silver. This is called electroplating.
	Suggest one reason why spoons are electroplated. [1 mark]
4 (b)	When sodium chloride solution is electrolysed the products are hydrogen and chlorine.
4 (b) (i)	What is made from chlorine? [1 mark]
	Tick (✓) one box.
	Bleach
	Fertiliser
	Soap
4 (b) (ii)	Sodium chloride solution contains two types of positive ions, hydrogen ions (H ⁺) and sodium ions (Na ⁺).
	Why is hydrogen produced at the negative electrode and not sodium? [1 mark]
	Tick (✓) one box.
	Hydrogen is a gas.
	Hydrogen is less reactive than sodium.
	Hydrogen ions move faster than sodium ions.

4 (b) (iii) Hydrogen and chlorine can be used to produce hydrogen chloride.

The diagrams in **Figure 4** show how the outer electrons are arranged in an atom of hydrogen and an atom of chlorine.

Figure 4

Hydrogen atom


Chlorine atom

Cl

Complete **Figure 5** to show how the outer electrons are arranged in a molecule of hydrogen chloride (HCI).

[1 mark]

Figure 5

4 (b) (iv) What is the type of bond in a molecule of hydrogen chloride?

[1 mark]

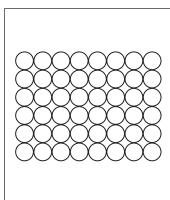
Tick (✓) one box.

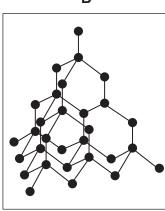
Covalent

Metallic

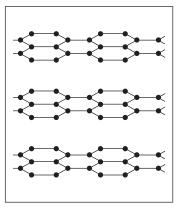
Question 4 continues on the next page

4 (b) (v)	Why is hydrogen chloride a gas at room temperature (20 °C)? [2 marks]	
	Tick (✓) two boxes.	
	Hydrogen chloride has a low boiling point.	
	Hydrogen chloride has a high melting point.	
	Hydrogen chloride is made of simple molecules.	
	Hydrogen chloride does not conduct electricity.	
	Hydrogen chloride has a giant structure.	
4 (c)	Aluminium is produced by electrolysis of a molten mixture of aluminium oxide and cryolite. This is shown in Figure 6 .	
	Figure 6	
cor	olten cryolite ntaining minium oxide O2- O2- O2- O2- Al3+ Al3+	
	Aluminium forms at the negative electrode	
4 (c) (i)	Name a gas produced at the positive electrode. [1 mark]	


4 (c) (ii)	Aluminium ions move to the negative electrode.
	Explain why. [2 marks]
4 (c) (iii)	At the negative electrode, the aluminium ions gain electrons to produce aluminium.
	What is this type of reaction called? [1 mark]
	Tick (✓) one box. Combustion
	Oxidation
	Reduction
4 (c) (iv)	Aluminium has layers of atoms, as shown in Figure 7 .
	Figure 7 Aluminium atom
	Complete the sentence. [1 mark]
	Metals can be bent and shaped because the layers of atoms can
	Question 4 continues on the next page


- 4 (d) Electrodes used in the production of aluminium are made from graphite.
- 4 (d) (i) Which diagram, A, B or C, shows the structure of graphite?

[1 mark]


Α

В

C

The structure of graphite is shown in diagram

4 (d) (ii) The temperature for the electrolysis is 950 °C.

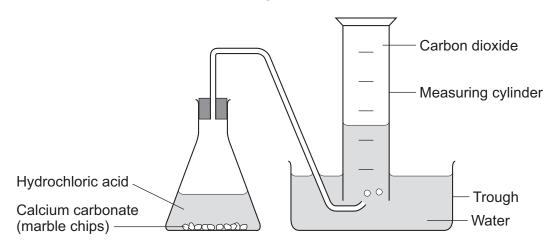

Use the correct answer from the box to complete the sentence.

[1 mark]

cross links a giant ionic lattice strong covalent bonds

The graphite does not melt at 950 °C because

graphite has



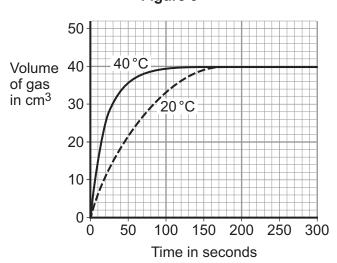
A student investigated the rate of reaction between calcium carbonate (marble chips) and hydrochloric acid.

The student used the apparatus shown in **Figure 8**.

Figure 8

The student:

- recorded the volume of gas collected every 5 seconds
- repeated the experiment using hydrochloric acid at different temperatures.


The equation for the reaction is:

$$\mathsf{CaCO}_3(\mathsf{s}) \ + \ 2\,\mathsf{HCl}(\mathsf{aq}) \ \longrightarrow \ \mathsf{CaCl}_2(\mathsf{aq}) \ + \ \mathsf{H}_2\mathsf{O}(\mathsf{I}) \ + \ \mathsf{CO}_2(\mathsf{g})$$

5 (a) The student plotted results for the hydrochloric acid at 20 °C and 40 °C on a graph.

Figure 9 shows the student's graph.

Figure 9

Use information from Figure 9 to answer these questions.

5 (a) (i) State **one** conclusion the student could make about the effect of temperature on the rate of the reaction.

[1 mark]

5 (a) (ii) Give **one** reason why the student could make this conclusion.

[1 mark]

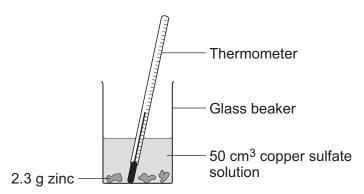
5 (a) (iii) For the hydrochloric acid at 60 °C the student had collected 30 cm³ after 15 seconds.

Calculate the average rate of reaction from 0 to 15 seconds.

[1 mark]

Rate of reaction = cm³ per second

5 (b)	The student then investigated how the surface area of marble chips affected the rate of reaction.	
5 (b) (i)	Which two variables should the student keep constant? [2 marks]	I
	Tick (✓) two boxes.	
	Amount of water in the trough	
	Concentration of acid	
	Mass of marble chips	
	Size of marble chips	
	Volume of measuring cylinder	
5 (b) (ii)	Explain, in terms of particles and collisions, the effect that increasing the surface area of the marble chips has on the rate of reaction.	
	[2 marks]	
5 (c)	Calcium carbonate is a catalyst for the industrial production of biodiesel.	
	Give one reason why using a catalyst reduces costs.	1
	[1 mark]	l
	[1 mark]	
	[1 mark]	



A student investigated the temperature change when zinc reacts with copper sulfate solution.

The student used a different concentration of copper sulfate solution for each experiment.

The student used the apparatus shown in Figure 10.

Figure 10

The student:

- measured 50 cm³ copper sulfate solution into a glass beaker
- measured the temperature of the copper sulfate solution
- added 2.3 g zinc
- measured the highest temperature
- repeated the experiment using copper sulfate solution with different concentrations.

The equation for the reaction is:

$$Zn(s)$$
 + $CuSO_4(aq)$ \longrightarrow $Cu(s)$ + $ZnSO_4(aq)$

$$zinc$$
 + copper sulfate solution \longrightarrow copper + $zinc$ sulfate solution

6 (a) The thermometer reading changes during the reaction.

Give **one** other change the student could **see** during the reaction.

Question 6 continues on the next page

Turn over ▶

[1 mark]

6 (b)	Suggest one improvement the student could make to the apparatus in Figu	re 10.
	Give a reason why this improves the investigation.	[2 marks]
	Improvement	
	Reason	

6 (c) In this question you will be assessed on using good English, organising information clearly and using specialist terms where appropriate.

The student's results are shown in **Table 2**.

Table 2

Experiment number	Concentration of copper sulfate in moles per dm ³	Increase in temperature in °C
1	0.1	5
2	0.2	10
3	0.3	12
4	0.4	20
5	0.5	25
6	0.6	30
7	0.7	35
8	0.8	35
9	0.9	35
10	1.0	35

	be and explain the trends shown in the student's results. [6]
Extra s	pace

END OF QUESTIONS

