A-level Mathematics
MSO4 - Statistics 4
Mark scheme

6360
June 2016

Version 1.0: Final Mark Scheme

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
Jor ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
$-x$ EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

General Notes for MS04

GN1 There is no allowance for misreads (MR) or miscopies (MC) unless specifically stated in a question
GN2 In general, a correct answer (to accuracy required) without working scores full marks but an incorrect answer (or an answer not to required accuracy) scores no marks

GN3 In general, a correct answer (to accuracy required) without units scores full marks
GN4 When applying AWFW, a slightly inaccurate numerical answer that is subsequently rounded to fall within the accepted range cannot be awarded full marks

GN5 Where percentage equivalent answers are permitted in a question, then penalise by one accuracy mark at the first correct answer but only if no indication of percentage (eg \%) is shown

GN6 In questions involving probabilities, do not award accuracy marks for answers given in the form of a ratio or odds such as $13 / 47$ given as $13: 47$ or 13:34

GN7 Accept decimal answers, providing that they have at least two leading zeros, in the form $c \times 10^{-n}$ (eg 0.00321 as 3.21×10^{-3})

Q	Solution	Marks	Total	Comments
$\begin{gathered} 1 \\ \text { (a) } \end{gathered}$	$\begin{aligned} \mathrm{P}(X<10)=1-\mathrm{e}^{-10 / 16} \text { or } 1-\mathrm{e}^{-0.625} & \\ & =\underline{\mathbf{0 . 4 6} \text { to } \mathbf{0 . 4 7}} \end{aligned}$	M1 A1	(2)	Use of $\operatorname{Exp}(\lambda=1 / 16$ or 0.0625$)$ AWFW (0.46474)
(b)		B1 B1	(2)	Can be implied AWRT (0.24876)
(c)	$\mathrm{P}(X \neq 15) \quad=1$ or one or unity or 100%	B1	(1)	CAO
			5	
		Total	5	

Q	Solution	Marks	Total	Comments
$\begin{gathered} 2 \\ \text { (a) } \end{gathered}$	Differences are: CI for μ_{d} is: $4.25 \pm 2.201 \times \frac{(7 \text { to } 7.01 \text { or } \sqrt{49.11})}{\sqrt{12}}$ or $4.25 \pm 2.201 \times \frac{(6.7 \text { to } 6.71 \text { or } \sqrt{45.02})}{\sqrt{11}}$ $4.25 \pm(4.44 \text { to } 4.46)$ or $(-0.21 \text { to }-0.19,8.69 \text { to } 8.71)$	M1 B1 A1 B1 B1 M1 A1 A1	8	Attempt at differences CAO; ignore sign AWFW (7.00811 or 6.70976) AWRT (49.11364 or 45.02083) CAO; can be implied AWRT Correct use of c's \bar{d} and t / z-value with $s_{d} / \sqrt{12}$ or $\sigma_{d} / \sqrt{11}$ Fully correct expression CAO/AWFW (4.45277) Allow reversed signs AWFW
Note	1 Unpaired CI (using t) \Rightarrow M0 B1 (77.08-81.33 = 4.25) A0 B1 (22) B1 (2.074) M0 A0 A0 (max of 3 marks)			
(b)	Since CI includes 0/zero there is no evidence, at 5% level, to support Jian's suspicion	Bdep1 Bdep1	2	Dependent on CI only providing CI includes zero Must reference 0/zero OE; Dep on Bdep1
		Total	10	

Q	Solution	Marks	Total	Comments
3 (a)	Diameters are (approximately) normally distributed CLs (variance) are: ie $\quad \frac{0.071306}{42.980}$ and $\frac{0.071306}{10.856}$ or 0.0016 to 0.0017 and 0.0065 to 0.0066 $\mathrm{CI}(\mathrm{sd})$ is thus:	B1 B1 B1 M1 A1 M1 A1	7	CAO; can be implied AWRT; either (10.856 and 42.980) $\left(s_{d}^{2}=0.0029711 \quad s_{d}=0.05451\right)$ OE; can be implied AWFW; can be implied Use of square root providing two positive values; can be implied AWRT; both $\quad(0.04073,0.08104)$
(b)	Since $\mathbf{C I}<\mathbf{0 . 1 0}$ there is evidence, at 2% level or at 1% level, of a reduction	Bdep1 Bdep1	2	Dependent on CI only providing CI is below 0.10 Must reference 0.10 OE; Dep on Bdep1
		Total	9	

Q	Solution	Marks	Total	Comments
$\begin{gathered} \hline 4 \\ \text { (a) } \end{gathered}$	ThirCars: or NYAutos: or $\begin{array}{ll}\mathrm{H}_{0}: & \sigma_{T}^{2}=\sigma_{N}^{2} \\ \mathrm{H}_{1}: & \sigma_{T}^{2} \neq \sigma_{N}^{2}\end{array}$ DF: $\begin{array}{lr} \text { DF: } & v_{1}=v_{2}=\underline{\mathbf{1 1}} \\ \text { CV: } & F_{11}^{11}(0.975)=\underline{\mathbf{3 . 4 7} \text { to } \mathbf{3 . 4 8}} \\ & F=\frac{173.63636}{168.90909} \text { or } \frac{159.1 \dot{6}}{154.8 \dot{3}}=\underline{\mathbf{1 . 0 3}} \end{array}$ Thus accept that $\sigma_{T}^{2}=\sigma_{N}^{2}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { Adep1 } \end{aligned}$	8	
(b)	ThirCars: NYAutos: $s_{p}^{2}=\frac{11 \times 173.63636+11 \times 168.90909}{12+12-2} s_{p}^{2}=\underline{\mathbf{1 7 1 . 2}} \text { to } \mathbf{1 7 1 . 3} \mathbf{x}$ or $s_{p}=\underline{13} \text { to } 13.1$ $\begin{aligned} & \mathrm{H}_{0}: \mu_{T}-\mu_{N}=36 \\ & \mathrm{H}_{1}: \mu_{T}-\mu_{N}>36 \end{aligned}$ DF: CV: $\begin{array}{r} v=12+12-2=\underline{\mathbf{2 2}} \\ t=\frac{(80-34)-36}{t_{22}(0.95)}=\underline{\mathbf{1 . 7 1} \text { to } \mathbf{1 . 7 2}} \tag{1.717}\\ 13.08712 \sqrt{\frac{1}{12}+\frac{1}{12}} \end{array} \quad \begin{array}{r} =\underline{\mathbf{1} .8 \text { to } \mathbf{1 . 9}} \end{array}$ Thus evidence, at 5\% level, to support Maureen's belief	B1 M1 A1 B1 B1 B1 B1 M1 M1 A1 Adep1	11	CAO; both or $\bar{d}=46$ OE; can be implied AWFW (171.27272) AWFW (13.08712) Accept 0 or 3 Must be > 36 CAO; can be implied AWFW Numerator; accept minus (0 or 3) Denominator AWFW (1.87168) Dep on t-value and CV
		Total	19	

Q	Solution	Marks	Total	Comments
$\begin{gathered} 5 \\ \text { (a)(i) } \end{gathered}$	$\begin{aligned} & \mu=\sum_{x=1}^{\infty} x p(1-p)^{x-1}=\sum_{x=1}^{\infty} x p q^{x-1} \\ & =p\left(1+2 q+3 q^{2}+4 q^{3}+5 q^{4}+\ldots\right) \\ & =p(1-q)^{-2}=\frac{p}{p^{2}}=\frac{1}{p} \end{aligned}$	M1 M1 A1	(3)	Ignore limits Common factor of p with expansion AG; fully correct and convincing
(ii)	$\mathrm{E}(X(X-1))=\sum_{x=2}^{\infty} x(x-1) p(1-p)^{x-1}$	(M1)		Only if M1 not scored in (i)
	$\begin{aligned} =2 p q+ & 6 p q^{2}+12 p q^{3}+20 p q^{4}+30 p q^{5}+\ldots \\ & =2 p q\left(1+3 q+6 q^{2}+10 q^{3}+15 q^{4}+\ldots\right) \\ & =2 p q(1-q)^{-3}=\frac{2 p q}{p^{3}}=\frac{2(1-p)}{p^{2}} \end{aligned}$ Thus $\sigma^{2}=\frac{2(1-p)}{p^{2}}+\frac{1}{p}-\frac{1}{p^{2}}=\frac{1}{p^{2}}-\frac{1}{p}=\frac{1-p}{p^{2}}$	M1 M1 A1 B1	(4)	Expansion Common factor of $2 p q$ AG; fully correct and convincing Fully correct and convincing
			7	
(b)	$\begin{aligned} & p=0.1 \Rightarrow \mu=\underline{\mathbf{1 0}} \text { and } \sigma^{2}=\underline{\mathbf{9 0}} \\ & \text { Thus require: } \\ & \underline{\mathrm{P}(\underline{\mathbf{0 . 5 1} \text { or } \mathbf{0}} \leq X \leq \underline{\mathbf{1 9 . 4 9} \text { or 19}})} \\ & \begin{aligned} & \mathrm{P}(X \leq 19)=\frac{p\left(1-q^{n}\right)}{1-q}=1-q^{19}=1-0.9^{19} \\ &=\underline{\mathbf{0 . 8 6} \text { to } \mathbf{0 . 8 7}} \end{aligned} \end{aligned}$	B1 B1 M1 A1	4	CAO both; accept $\sigma=\sqrt{ } 90$ or 9.49 AWRT; accept $\mathrm{P}(X \leq 19)$ alone Correct attempt at $\mathrm{P}(X \leq x)$ or $\mathrm{P}(X>x)$ providing x is an integer value AWFW (0.864915)
		Total	11	

Notes for (a)
(i) Let $S=\left(1+2 q+3 q^{2}+4 q^{3}+5 q^{4}+\ldots\right)=\left(1+q+q^{2}+q^{3}+q^{4}+\ldots\right)+\left(q+2 q^{2}+3 q^{3}+4 q^{4}+\ldots\right)$

$$
S=\frac{1}{1-q}+q S \Rightarrow S=\frac{1}{(1-q)^{2}}=\frac{1}{p^{2}} \Rightarrow \mu=p S=\frac{1}{p}
$$

(ii) Let $T=\left(1+3 q+6 q^{2}+10 q^{3}+15 q^{4}+\ldots\right)=\left(1+2 q+3 q^{2}+4 q^{3}+5 q^{4}+\ldots\right)+\left(q+3 q^{2}+6 q^{3}+10 q^{4}+\ldots\right)$

$$
T=S+q T \Rightarrow T=\frac{S}{1-q}=\frac{S}{p} \Rightarrow \mathrm{E}(X(X-1))=2 p q T=\frac{2 p q S}{p}=2 q \times \frac{1}{p^{2}}=\frac{2(1-p)}{p^{2}}
$$

Many other valid solutions are possible and allowable

Q	Solution	Marks	Total	Comments
$\begin{gathered} 7 \\ \text { (a) } \end{gathered}$	X: Mean $=\underline{\boldsymbol{n} \boldsymbol{p}}$ Variance $=\underline{\boldsymbol{n} \boldsymbol{p}(\mathbf{1}-\boldsymbol{p})}$ Y: Mean $=\underline{\mathbf{3 n} \boldsymbol{p}}$ Variance $=\underline{\mathbf{3 n p}(\mathbf{1}-\boldsymbol{p})}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	2	Both means Both variances; accept $q=1-p$
(b)	$\begin{aligned} & \mathrm{E}\left(\hat{P}_{1}\right)=\mathrm{E}\left(\frac{X+Y}{4 n}\right)=\frac{n p+3 n p}{4 n}=\boldsymbol{p} \\ & \mathrm{E}\left(\hat{P}_{2}\right)=\mathrm{E}\left(\frac{1}{2}\left(\frac{X}{n}+\frac{Y}{3 n}\right)\right)=\frac{1}{2}\left(\frac{n p}{n}+\frac{3 n p}{3 n}\right)=\boldsymbol{p} \\ & \begin{aligned} \mathrm{V}\left(\hat{P}_{1}\right)=\mathrm{V}\left(\frac{X+Y}{4 n}\right)=\frac{n p q+3 n p q}{16 n^{2}} & =\frac{\frac{\boldsymbol{p}(\mathbf{1}-\boldsymbol{p})}{4 \boldsymbol{n}}}{\mathrm{~V}\left(\hat{P}_{2}\right)=\mathrm{V}\left(\frac{1}{2}\left(\frac{X}{n}+\frac{Y}{3 n}\right)\right)=\frac{1}{4}\left(\frac{n p q}{n^{2}}+\frac{3 n p q}{9 n^{2}}\right)} \\ & =\frac{\boldsymbol{p}(\mathbf{1}-\boldsymbol{p})}{3 \boldsymbol{n}} \end{aligned} \end{aligned}$ Consistent as both variances $\rightarrow 0$ as $n \rightarrow \infty$ Since $\mathrm{V}\left(\hat{P}_{1}\right)<\mathrm{V}\left(\hat{P}_{2}\right)$ or $\operatorname{RE}\left(\hat{P}_{1}: \hat{P}_{2}\right)=\frac{\mathrm{V}\left(\hat{P}_{2}\right)}{V\left(\hat{P}_{1}\right)}=\frac{4}{3}>1$ $\Rightarrow \hat{P}_{1}$ is more efficient	M1 A1 M1 A1 AF1 Bdep1 Bdep1	7	One attempted application of E Two correct applications One attempted application (an) ${ }^{2}$ of V Two correct applications OE; F on both variances having n^{-1} Dependent on $\mathrm{V}\left(\hat{P}_{1}\right)$ and $\mathrm{V}\left(\hat{P}_{2}\right)$ only providing a numerical ratio from two terms of the form $p(1-p) / a n$ Dependent on Bdep1
		Total	9	

