AQA

Please write clearly in block capitals.

Centre number | |
| :--- |

Candidate number

Surname
Forename(s)
Candidate signature \qquad

A-level

MATHEMATICS

Unit Statistics 3

Monday 26 June 2017
Afternoon
Time allowed: 1 hour 30 minutes

Materials

For this paper you must have:

- the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Write the question part reference (eg (a), (b)(i) etc) in the left-hand margin.
- You must answer each question in the space provided for that question. If you require extra space, use an AQA supplementary answer book; do not use the space provided for a different question.
- Do not write outside the box around each page.
- Show all necessary working, otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
TOTAL	

- The final answer to questions requiring the use of tables or calculators should normally be given to three significant figures.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 75 .

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

QuESTON RFFRRENCE	Answer space for question 1

2 A council wishes to estimate the proportion of library customers who own a hand-held electronic device for reading books.

A sample of 440 customers showed that 77 owned such a device.
Stating a necessary assumption about the sample, construct an approximate 99% confidence interval for the proportion of library customers who own a hand-held electronic device for reading books.

$\begin{gathered} \text { QUESTION } \\ \text { PART } \\ \text { REFERENCE } \end{gathered}$	Answer space for question 2

$\begin{array}{\|c\|} \hline \text { QUESTION } \\ \text { PART } \\ \text { REFERENCE } \end{array}$	Answer space for question 2
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
_	
-	

3 The number of faulty peel \& seal envelopes in a pack of 1000 envelopes produced by a particular company's machine may be modelled by a Poisson distribution.

Prior to a minor upgrade of the machine, the average number of faulty envelopes per pack was 8 envelopes.
(a) Following this upgrade, a randomly selected pack of 1000 envelopes contained 5 envelopes that were faulty.

Use an exact test and the 5% level of significance to investigate the success or otherwise of the minor upgrade in reducing the average number of faulty envelopes per pack.
(b) The company subsequently decided to carry out a major refurbishment of the machine.

Following this refurbishment, a random sample of 50 packs of 1000 envelopes contained a total of 348 envelopes that were faulty.

Investigate, at the 1% level of significance, whether the major refurbishment of the machine has reduced the average number of faulty envelopes per pack.

$\begin{gathered} \text { QUESTION } \\ \text { PART } \\ \text { REFERENCE } \end{gathered}$	Answer space for question 3

$\begin{array}{\|c\|} \hline \text { QUESTION } \\ \text { PART } \\ \text { REFERENCE } \end{array}$	Answer space for question 3

QUESTRON RERERRNCE	Answer space for question 3

QUESTTON REFERENCE	Answer space for question 3

4 Faults which occur in a particular make of dishwasher can be categorised as mechanical (event M), electrical (event E) or water (event W).

It has been established that $\mathrm{P}(M)=0.45, \mathrm{P}(E)=0.25$ and $\mathrm{P}(W)=0.30$.
When a fault occurs, a dishwasher display shows one of three fault codes: C1, C2 or C3.

It is known that:

$$
\begin{array}{lll}
\mathrm{P}(C 1 \mid M)=0.80 & \mathrm{P}(C 2 \mid M)=0.05 & \mathrm{P}(C 3 \mid M)=0.15 \\
\mathrm{P}(C 1 \mid E)=0.10 & \mathrm{P}(C 2 \mid E)=0.85 & \mathrm{P}(C 3 \mid E)=0.05 \\
\mathrm{P}(C 1 \mid W)=0.00 & \mathrm{P}(C 2 \mid W)=0.25 & \mathrm{P}(C 3 \mid W)=0.75
\end{array}
$$

A dishwasher of this particular make is showing a fault code on its display. Calculate the probability that this dishwasher:
(a) displays fault code Cl ;
(b) has a mechanical fault, given that it displays code $C 1$;
(c) has an electrical fault, given that it displays code $C 2$;
(d) does not have a water fault, given that it does not display code C3.

$\substack{\text { QUESTION } \\ \text { RART } \\ \text { REFRENCE }}$	Answer space for question 4

QUESTTON REFERENCE	Answer space for question 4

QUEATRON REFRRENCE	Answer space for question 4

QUESTTON REFERENCE	Answer space for question 4

5 The numbers of cars, X, and the numbers of bicycles, Y, owned by households in a town may be modelled by the following bivariate probability distribution.

		Number of cars (\boldsymbol{X})				
		$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{P}(\boldsymbol{Y}=\boldsymbol{y})$
Number of bicycles (\boldsymbol{Y})	$\mathbf{0}$	0.07	0.12	0.18	0.13	0.50
	$\mathbf{1}$	0.03	0.18	0.07	0.02	0.30
	$\mathbf{3}$	0.02	0.03	0.05	0.00	0.10
	$\mathbf{4}$	0.03	0.02	0.00	0.00	0.05
	$\mathbf{P}(\boldsymbol{X}=\boldsymbol{x})$	0.15	0.40	0.30	0.15	1.00

(a) (i) Calculate exact values for $\mathrm{E}(X)$ and $\operatorname{Var}(X)$.
(ii) Given that

$$
\mathrm{E}(Y)=0.85, \mathrm{E}\left(Y^{2}\right)=1.95 \text { and } \mathrm{E}(X Y)=0.90
$$

calculate exact values for $\operatorname{Var}(Y)$ and $\operatorname{Cov}(X, Y)$.
(iii) Hence calculate the value of the correlation coefficient between X and Y.
(b) Calculate values for the mean and the variance of:
(i) $T=X+Y$;
(ii) $D=X-Y$.

$\substack{\text { OUESTRON } \\ \text { REFRRENCE }}$	Answer space for question 5

QUESTRON REFERENCE	Answer space for question 5

$\substack{\text { QUESTON } \\ \text { REFRRENCE }}$	Answer space for question 5

QUESTION RFFRRENCE	Answer space for question 5

6 (a) The random variable X has a binomial distribution with parameters n and p.
Prove that $\mathrm{E}(X)=n p$.
(b) The random variable Y has a Poisson distribution with mean λ.

Prove that $\operatorname{Var}(Y)=\lambda$.
(c) A company manufactures metal screws. The probability that a screw is faulty is 0.005 . The screws are sold in packets and boxes. The screws in a packet or in a box may be considered to be a random sample.
(i) Customer A buys a packet of 50 screws.

Determine the probability that the packet contains exactly one faulty screw.
[2 marks]
(ii) Customer B buys a small box of 250 screws.

Use a distributional approximation to estimate the probability that the small box contains fewer than two faulty screws.
[3 marks]
(iii) Wholesaler C buys 50 large boxes, each containing exactly 1000 screws.

Use a distributional approximation to estimate the probability that the total number of faulty screws in the 50 large boxes is more than 240 .
[5 marks]

QUESTRON REFERT RCE	Answer space for question 6

$\begin{array}{\|c\|} \hline \text { QUESTION } \\ \text { PART } \\ \text { REFERENCE } \end{array}$	Answer space for question 6

QUESTRON REFRRENCE	Answer space for question 6

QUESTION PART REFERENCE	Answer space for question 6

7 Results from an investigation into the characteristics of saltwater crocodiles included the following summarised data on the lengths, x metres, of a sample of 40 adult males and the lengths, y metres, of a sample of 30 adult females.

$$
\begin{array}{lll}
\text { Males: } & \sum x=181.20 & \sum(x-\bar{x})^{2}=11.7022 \\
\text { Females: } & \sum y=86.40 & \sum(y-\bar{y})^{2}=3.4806
\end{array}
$$

(a) Investigate, at the 5% level of significance, the hypothesis that the mean length of adult male saltwater crocodiles exceeds that of adult female saltwater crocodiles by more than 1.5 metres.
(b) Deduce that, for the test of the hypothesis in part (a), the critical value of $\bar{X}-\bar{Y}$ is 1.68 , correct to three significant figures.
(c) It is subsequently established that the mean length of adult male saltwater crocodiles exceeds that of adult female saltwater crocodiles by 1.85 metres.

Determine the power for a test of the hypothesis in part (a) at the 5% level of significance, based upon random samples of 40 adult male saltwater crocodiles and 30 adult female saltwater crocodiles.

$=\mathrm{Answe}$ s sace for or westion 7	

$\substack{\text { QUESTION } \\ \text { REFERENCE }}$	Answer space for question 7

	Answer space for question 7

END OF QUESTIONS

Copyright Information

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third party copyright material will be published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2017 AQA and its licensors. All rights reserved.

