A-LEVEL Mathematics

MS2B Statistics 2B
Mark scheme

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Key to mark scheme abbreviations

M	mark is for method
m	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
Adep	mark is dependent on A or B marks as detailed and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
ft or F	follow through from previous incorrect result
CAO	correct answer only
AWFW	anything which falls within
AWRT	anything which rounds to
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
NMS	no method shown
PI	possibly implied
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q1	Solution	Marks	Total	Comments
(a)	$\begin{aligned} & \frac{1}{6}(x-3)=0.75 \\ & x=7.5 \quad\left(\text { or } 71 / 2 \text { or } \frac{15}{2}\right) \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	2	CAO B2 for unsupported answer
(b)	$\mathrm{f}(x)=\frac{1}{6} \quad(3 \leq x \leq 9)$ Or recognition as uniform + formula Mean $=6$ Variance $=\frac{1}{12}(9-3)^{2}(=3)$ Or integration leading to $39-6^{2}(=3)$ $\text { s.d. }=\sqrt{ } 3 \quad(=1.73)$	M1 A1 M1 A1	4	Correct differentiation seen Clear use of $\mathrm{F}(\mathrm{x})=0.5 \mathrm{OE}$ to find median rather than mean scores M0 CAO Formula applied or by integration Exact or AWRT 3 s.f.
			6	

Q2	Solution	Marks	Total	Comments
(a)	The sample must be random(ly selected)	E1		Not 'it' or 'they' or 'the data' 'is/are random'
	(the April) rainfall must be normal(ly distributed)	E1	2	Referring to the population not the sample
(b)	$\bar{x}=35.6$	B1		CAO
	$s=32.50$ or $30.40\left(\right.$ or $s^{2}=1056.5$ or 924.5)	B1		AWRT 32.5 or 30.4 (or AWFW 1056 to 1057 or 924 to 925)
	$t_{7}=3.499$	B1		AWRT 3.50
	$\begin{aligned} & 35.6 \pm 3.499 \times \mathrm{se} \\ & \text { where } \mathrm{se}=32.5 / \sqrt{ } 8 \text { or } 30.4 / \sqrt{ } 7 \end{aligned}$	M1		PI by correct answer
	-4.6, 75.8	A1		CAO
			5	
(c)	Since mean rainfall cannot be negative	M1		Recognition of the problem in context (as long as their c.i. includes negative)
			9	

Note. Use of z or wrong t value in (b) scores maximum of B1 B1 B0 M0 A0

Q3	Solution	Marks	Total	Comments
(a)(i)	$\begin{aligned} & 7 \times 3 \times 0.1=2.1 . \text { So } \operatorname{Po}(2.1) \\ & \left(\mathrm{e}^{-2.1} \times \frac{2.1^{4}}{4!}\right)=0.0992 \end{aligned}$	M1 A1	2	Stated or implied by formula or correct final answer AWRT. Formula or calculator.
(a)(ii)	$5 \times 4 \times 0.3=6 . \text { Use of } \operatorname{Po}(6)$ We require $\mathrm{P}(\leq 9)-\mathrm{P}(\leq 5)$ $\begin{aligned} & 0.9161-0.4457 \\ & =0.470(4) \end{aligned}$	M1 M1 B1 A1	4	Must see use of $0.4457,0.6063$, $0.7440,0.9161,0.9574$ or 0.9799 to at least 3 s.f. Stated or implied by either of following lines Either, to at least 3 s.f. AWRT 0.470. Accept 0.47
(a)(iii)	$\begin{array}{ll} 1-\mathrm{e}^{-2.1}(=0.8775) \\ \times 0.002478 & (0.0025) \\ =0.00217 & \text { or } 2.17 \times 10^{-3} \end{array}$	M1 B1 A1	3	Possibly implied AWRT 0.0025 Must multiply AWFW 0.00217 to 0.00220
(b)	$\begin{aligned} & \mathrm{A}=\pi r^{2} \text { so } \lambda=0.1 \pi r^{2} \\ & \sigma=\sqrt{ } \text { variance }=\sqrt{ } \lambda=\sqrt{ }\left(0.1 \pi r^{2}\right)=\sqrt{ }(0.1 \pi) r \\ & \sigma=0.560 r \text { or } k=0.560 \end{aligned}$	M1 A1 A1	3	Must identify $0.1 \pi r^{2}$ as λ or σ^{2} Accept $0.560 r$ for this mark Accept 0.560 or 0.561 only.
			12	

Note. Where a candidate has an incorrect value for \mathbf{c} or uses decimal equivalent to $\frac{1}{28}$ award marks as follows:
(b) B1F for $\mathrm{P}(X>4)=6 \mathrm{c}$ or $\mathrm{P}(X \leq 4)=1-6 \mathrm{c}$, exact, or decimal equivalent to 3sf, and then maybe M1 A1 if using the decimal equivalent of $\frac{1}{28}$.
(c) M1 A0 M1 A0 A0 for correct method from their table.
(d) M1 m1 M1 A0 for correct method from their table

Q6	Solution	Marks	Total	Comments
(a)	$\mathrm{H}_{0}: \mu=1.25$			
	$\mathrm{H}_{1}: \mu \neq 1.25$	B1		Both
	Sample mean $=1.66$	B1		CAO
	$s^{2}=0.53978 \quad(s=0.735)$	B1		AWRT 0.54 (AWFW 0.734 to 0.735)
	$\text { Test statistic }=\frac{(1.66-1.25)}{\frac{s}{\sqrt{10}}}$	M1 m1		For denominator (c's s) PI by ts For numerator (ignore sign) PI by ts
	$=1.765$	A1		AWFW 1.76 to 1.77
	$\mathrm{t}_{9}=1.833$	B1		AWRT 1.83
	$\left(1.765<1.833 \text { so accept } \mathrm{H}_{0}\right)$			
	There is not sufficient evidence that the mean weight of adult trout has changed.	A1dep	8	Dep on preceding A1 and B1 In context (at least 'weight'). Must specify "mean".
(b)	Marks in (b) dependent on A1dep in (a) apart from the Special Case			
	The mean weight has changed We accepted H_{0} when H_{0} false We accepted H_{0} when H_{1} true We rejected H_{1} when H_{1} true	M1		Any of these four lines or close equiv
 so a Type II error has been made.	E1		
	SC If A0(dep) but 'The mean weight has changed' scores M1 A0			
			2	
			10	

Q7	Solution	Marks	Total	Comments
(a)(i)	Graph zero for $x \leq-a$ and $x \geq a$ Correct shape from $-a$ to a. Shape drawn passes through $\left(0, k a^{4}\right)$	B1 B1 B1	3	Not given for a totally blank graph! Drawn graph must pass through $(-a, 0)$ and $(a, 0)$. "Bell shaped" Must have a rounded top at $x=0$, condone gradient not reducing at bottom Labelled as $k a^{4}$
(ii)	$\begin{aligned} & 1=\int_{-a}^{a} k(x-a)^{2}(x+a)^{2} \mathrm{~d} x \\ & =\int_{-a}^{a} k\left(x^{4}-2 a^{2} x^{2}+a^{4}\right) \mathrm{d} x \\ & \text { (or } \left.0.5=\int_{0}^{a} k(x-a)^{2}(x+a)^{2} \mathrm{~d} x\right) \\ & =\left[k\left(\frac{1}{5} x^{5}-\frac{2}{3} a^{2} x^{3}+a^{4} x\right]_{-a}^{a}\right. \\ & 1=\frac{16}{15} k a^{5} \quad \quad\left(\text { or } 0.5=\frac{8}{15} k a^{5}\right) \end{aligned}$ So $k=\frac{15}{16 a^{5}}$	M1 m1 A1 A1	4	Correct integral (either of these two) equal to 1 here or later. Condone missing limits until A1 Must have the limits for this Correct integration Limits inserted and simplified to this single fraction CAO
(iii)	$\mathrm{E}(X)=0$	B1	1	Irrespective of working
(iv)	$\begin{aligned} & \mathrm{E}\left(X^{2}\right)=\int_{-a}^{a} k x^{2}\left(x^{4}-2 a^{2} x^{2}+a^{4}\right) \mathrm{d} x \\ & =\left[k\left(\frac{1}{7} x^{7}-\frac{2}{5} a^{2} x^{5}+\frac{1}{3} a^{4} x^{3}\right]_{-a}^{a}\right. \\ & =k \times \frac{16 a^{7}}{105} \\ & =\frac{a^{2}}{7} \text { and } \operatorname{Var}(X)=\mathrm{E}\left(X^{2}\right)-0^{2}=\frac{a^{2}}{7} \end{aligned}$	M1 m1 A1 A1	4	Correct integral. k or their value for k provided constant. Condone missing limits until A1 Correct integration Limits inserted and simplified to this single fraction CAO
(b)(i)	$\mathrm{E}(Y)=7 a$	B1	1	CAO
(ii)	$\operatorname{Var}(Y)=7 a^{2}$	B1	1	CAO
			14	

