A-LEVEL MATHEMATICS
MS2B - Statistics 2B
Mark scheme

6360
June 2016

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

## Key to mark scheme abbreviations

| M | mark is for method |
| :---: | :---: |
| m or dM | mark is dependent on one or more M marks and is for method |
| A | mark is dependent on M or m marks and is for accuracy |
| B | mark is independent of M or m marks and is for method and accuracy |
| E | mark is for explanation |
| Vor ft or F | follow through from previous incorrect result |
| CAO | correct answer only |
| CSO | correct solution only |
| AWFW | anything which falls within |
| AWRT | anything which rounds to |
| ACF | any correct form |
| AG | answer given |
| SC | special case |
| OE | or equivalent |
| A2,1 | 2 or 1 (or 0) accuracy marks |
| -x EE | deduct $x$ marks for each error |
| NMS | no method shown |
| PI | possibly implied |
| SCA | substantially correct approach |
| c | candidate |
| sf | significant figure(s) |
| dp | decimal place(s) |

## No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

| Q1 | Solution | Marks | Total | Comments |
| :---: | :---: | :---: | :---: | :---: |
|  | Throughout parts (a) to (d) |  |  | Unsupported correct answers score full marks |
| (a) | 0.703 | B1 | 1 | AWRT |
| (b) | $\begin{aligned} & e^{-2.3}+e^{-2.3} \times 2.3 \quad(=0.100 \ldots+0.231 \ldots) \\ & (=0.331) \\ & 1-\left(e^{-2.3}+e^{-2.3} \times 2.3\right)=0.669 \end{aligned}$ | $\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$ | 3 | PI For either $\mathrm{P}(X=0)$ or $\mathrm{P}(X=1)$ For both $P(X=0)$ and $P(X=1)$ or sum AWRT 0.669 |
| (c) | Use of $\mathrm{Po}(6)$ <br> 0.9799 for top value <br> - 0.8472 for bottom value <br> Or $\mathrm{e}^{-6}\left(\frac{6^{9}}{9!}+\frac{6^{10}}{10!}+\frac{6^{11}}{11!}\right)$ <br> $=0.1327=0.133$ | M1 <br> A1 <br> A1 | 3 | $\begin{aligned} & 0.7440,0.8472,0.9161,0.9799 \text {, } \\ & 0.9912 \text { or } 0.9964 \text { seen } \end{aligned}$ <br> AWFW 0.9798 to 0.9800 AWFW 0.8470 to 0.8473 A1 for either of these values or this expression OE <br> AWRT 0.133 |
| (d) | $\begin{aligned} & \text { Use of Po(0.8) } \\ & e^{-0.8} \times 0.8^{2} / 2 \text { or } 0.9526-0.8088 \\ & =0.1438=0.144 \end{aligned}$ | $\begin{aligned} & \hline \text { M1 } \\ & \text { m1 } \\ & \text { A1 } \end{aligned}$ | 3 | Correct formula or 0.9526 or 0.8088 seen <br> AWRT 0.144 |
| (e) | $\begin{aligned} & (1-0.0111) \times\left(1-\mathrm{e}^{-2.3}\right) \times(1-0.3012) \\ & 0.9889 \times 0.8997 \times 0.6988=0.622 \end{aligned}$ | B1 <br> M1 <br> A1 | 3 | For any one of these seen or PI by the correct value seen ( 3 sf or better) For all three correct and multiplied PI <br> AWRT |
|  |  |  | 13 |  |


| Q2 | Solution | Marks | Total | Comments |
| :---: | :--- | :---: | :---: | :--- |
|  | $\bar{x}$ or $\mu=(32.93+30.47) \div 2=\underline{31.7}$ | B1 |  | CAO $\bar{x}$ or $\mu$ not necessary but do not <br> ISW. If contradictory value for $\mu$ seen <br> then B0. |
| $t_{9}=2.262$ |  |  |  |  |
| $(32.93-30.47)=(2 \times 2.262 \times s) \div \sqrt{ } 10$ | m 1 | M 1 |  | AWRT 2.26 <br> OE single correct equation with only <br> $s$ or $\sigma$ unknown |
| $s=1.72$ so unbiased estimate for $\sigma^{2}$ is 2.96 | A1 |  | AWFW 2.95 to 2.96 <br> Final answer 1.72 earns M1 m1 A0 |  |
|  |  |  | $\mathbf{4}$ |  |


| Q3 | Solution | Marks | Total | Comments |
| :---: | :---: | :---: | :---: | :---: |
| (a) | 0.35 | B1 | 1 | CAO or equivalent fraction or \% |
| (b) | $\begin{aligned} & \mathrm{P}(<3)=0.45 \\ & { }^{0} .35 \text { ’ } \times 0.45 \text { ' }(=0.1575) \\ & \times 2=0.315 \end{aligned}$ | $\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$ | 3 | Their 0.35 and 0.45 CAO or equivalent fraction or \% |
| (c) | $\begin{aligned} & \text { Mean }=1 \times 0.19+2 \times 0.26+3 \times 0.20+ \\ & 4 \times 0.13+5 \times 0.07+6 \times 0.15 \\ & =0.19+0.52+0.60+0.52+0.35+0.90 \\ & =3.08 \\ & \text { Variance }=1^{2} \times 0.19+2^{2} \times 0.26+3^{2} \times 0.20+ \\ & 4^{2} \times 0.13+5^{2} \times 0.07+6^{2} \times 0.15-3.08^{2} \\ & =2.77(36) \end{aligned}$ | M1 <br> A1 <br> M1 <br> A1 | 4 | This working, or the next line, must be seen (at least 3 products) <br> CAO. AG. <br> PI <br> AWFW 2.77 to 2.78 |
| (d) | No probability of 0 books borrowed.. .and no probability of more than 6 books. <br> Wrong shape or probability increases at top end. | E2,1,0 | 2 | Cannot borrow no books <br> Cannot borrow more than 6 books <br> E1 for each of these 3 distinct points up to a maximum of 2 marks |
| (e)(i) <br> (ii) | $\begin{aligned} & 10 \times 3.08=30.8(\text { pence }) \\ & \text { ' } 2.7736^{\prime} \times 100=' 277.36 \text { ' then } V^{\prime} 277.36 \text { ' } \\ & =16.7 \text { (pence) } \\ & \text { or } \\ & V^{‘} 2.7736^{\prime}=‘ 1.66 \ldots ', \quad ' 1.67 ’ \times 10 \\ & =16.7 \text { (pence) } \end{aligned}$ <br> Where working is in $£$ in (i) or (ii) or both <br> (i) $£ 0.308$ <br> (ii) $\quad$ ' $2.7736 \prime \times 0.01=0.027736$ $\checkmark^{\prime} 0.027736$ ' = £0.167 <br> Or $\begin{aligned} & \sqrt{ } 2.7736 \prime \\ = & £ 0.167 \end{aligned}$ | M1 <br> A1 <br> (M1) <br> (A1) <br> (B1) <br> (M1) <br> (A1) <br> (M1) <br> (A1) |  | CAO 31, without 30.8 seen, scores BO <br> For their variance $\times 100$ and $\sqrt{ }$ <br> AWFW 16 to 17 <br> For $\sqrt{ }$ their variance and $\times 10$ AWFW 16 to 17 <br> Must show $£$ sign <br> For their variance $\times 0.01$ and $\sqrt{ }$ AWFW 0.16 to 0.17 . Must show $£$ sign <br> For $\sqrt{ }$ their variance and $\times 0.1$ AWFW 0.16 to 0.17 . Must show $£$ sign |
|  |  |  | 13 |  |


| Q4 | Solution | Marks | Total | Comments |
| :---: | :---: | :---: | :---: | :---: |
| (a) | 10 | B1 | 1 | CAO |
| (b) | $0.07 \times 10=0.7$ | B1 | 1 | OE |
| (c)(i) <br> (ii) <br> (iii) | $\begin{aligned} & \mathrm{E}(X)=1 / 20 \\ & \mathrm{E}\left(X^{2}\right)=\int_{0}^{0.1} 10 x^{2} \mathrm{~d} x \\ & =\left[{ }^{10} / 3 x^{3}\right]_{0}^{0.1}=1 / 300 \\ & \operatorname{Var}(X)=\mathrm{E}\left(X^{2}\right)-\mathrm{E}(X)^{2}=1 / 300-(1 / 20)^{2} \\ & =1 / 1200 \text { So sd }=\sqrt{ }(1 / 1200)=\sqrt{3} / 60=0.0289 \end{aligned}$ | B1 <br> M1 <br> A1 <br> M1 <br> A1 | 5 | Decimal or fraction Integration, correct limits, their $k$ Or at least 3sf equivalent <br> Correct expression - allow use of 0.003 or 0.0033 or better for M1 <br> Equivalent surd or AWFW 0.0288 to 0.0289 <br> Correct answer but not derived from <br> (ii) scores M0 B1. |
|  |  |  | 7 |  |



No Yates: Can score M1, M1, A1, A1, M0, A0, B1, B1, B1, A0, E0 = 7 out of 11 ( $\chi^{2}=3.05$ )
No combining: Can score M1, M0, A0, A0, M0, A0, B1, B1 (for 2 d.o.f. giving 4.605), B1, A0, E0 = 4 out of $11 \quad\left(\chi^{2}=3.92\right)$

Just 2 cells combined (1.96 and 6.02) can score M1 M1 and B1 for hypotheses

\begin{tabular}{|c|c|c|c|c|}
\hline Q6 \& Solution \& Marks \& Total \& Comments \\
\hline (a) \& \begin{tabular}{l}
\[
\begin{aligned}
\& H_{0}: \mu=18.2 \quad(\text { or } \mu \geq 18.2) \\
\& \mathrm{H}_{1}: \mu<18.2 \\
\& \bar{x}=1384.5 \div 78=17.75 \\
\& \text { test stat }=\frac{\cdot 17.75 \prime-18.2}{(1.8 \div \sqrt{ } 78)} \\
\& =-2.208 \\
\& z_{\text {crit }}= \pm 2.0537 \\
\& -2.208<-2.0537 \quad \text { or } 2.208>2.0537
\end{aligned}
\] \\
in critical region, reject \(\mathrm{H}_{0}\) or accept \(\mathrm{H}_{1}\) \\
There is significant evidence at the \(2 \%\) level of significance to support Gerald's belief.
\end{tabular} \& B1
B1
M1
A1
B1
A1 dep
E1 dep \& \& \begin{tabular}{l}
For both. \(\mu\) or "population mean" CAO \\
Condone 18.2 - '17.75' for M1 \\
AWRT -2.21 Must be negative \\
AWRT \(\pm 2.05\) \\
Comparison stated or diagram Dep on previous A1 and B1 \\
Context conclusion. Dep on A1 dep. \\
Definitive conclusions (Eg Gerald is correct) score E0. If not referring to belief, must use "mean" or "average"
\end{tabular} \\
\hline \& \begin{tabular}{l}
Alternative Calculation of critical region boundary value or using confidence interval \(\mathrm{H}_{0}\) and \(\mathrm{H}_{1}\) as above
\[
\begin{array}{|l|c|}
\begin{array}{l}
\bar{x}=1384.5 \div 78=17.75 \\
z_{\text {crit }}= \pm 2.0537 \\
18.2-2.0537 \times \frac{1.8}{\sqrt{78}}
\end{array} \& 17.75+2.0537 \times \frac{1.8}{\sqrt{78}} \\
=17.78 \& =18.17 \\
17.75<17.78 \& 18.2>18.17 \\
\text { so reject } \mathrm{H}_{0} \& \text { so } 18.2 \text { above Cl }
\end{array}
\] \\
Context conclusion as above
\end{tabular} \& \begin{tabular}{l}
(B1) \\
(B1) \\
(B1) \\
(M1) \\
(A1) \\
(A1dep) \\
(E1dep)
\end{tabular} \& \& \begin{tabular}{l}
CAO. \\
AWRT \(\pm 2.05\) \\
Must be subtracting/adding as appropriate AWRT \\
Comparison stated or diagram. Dep on previous A1 \\
Dep on A1 dep
\end{tabular} \\
\hline (b) (i)

(ii) \& \begin{tabular}{l}
$$
\begin{aligned}
& \bar{x}=16.7, \mathrm{~s}=1.94(3) \\
& t_{6}=2.447 \\
& 16.7 \pm 2.447 \times 1.94{ }^{\prime} / \sqrt{ } 7 \\
& =14.9,18.5 \text { or } 16.7 \pm 1.8
\end{aligned}
$$ <br>
18.2 (or the mean for mainland lizards) lies within this confidence interval so no evidence to support Gerald's belief.

 \&  \& 7 \& 

For both, CAO \& AWRT 1.94 PI <br>
AWFW 2.44 to 2.45 <br>
Use of $\sqrt{ } 7$ <br>
Their 1.94 \& rest of formula correct AWRT 14.9, 18.5. <br>
Correct answer seen, no working shown scores all 5 marks. <br>
FT provided both M marks earned and Cl includes 18.2 <br>
Must be a clear statement of this. Dep on A1 FT
\end{tabular} <br>

\hline (c) \& | $\bar{x}=19.73 \text { which is }>18.2$ |
| :--- |
| so cannot provide evidence to support Gerald's belief. | \& \[

$$
\begin{array}{|c|}
\hline \text { B1 } \\
\text { E1 dep } \\
\hline
\end{array}
$$
\] \& 2 \& Calculation and this comparison Accept $19.73>$ mean on mainland Comment in context. Dep on B1 <br>

\hline \& \& \& 16 \& <br>
\hline
\end{tabular}

| Q7 | Solution | Marks | Total | Comments |
| :---: | :---: | :---: | :---: | :---: |
| (a) | Candidate's own grid used is acceptable. |  |  | Accept wobbly lines as straight if it seems candidate has no ruler |
|  | Nothing drawn beyond 1 and 6 (or line at 0) | B1 |  | Must be at least one line drawn somewhere on the diagram |
|  | Differentiate to give $\mathrm{f}(x)=1 / 4 \text { for } 1 \leq x<4$ | M1 |  | Allow this M1 if seen in (b) PI by correct line |
|  | Straight line joining ( $1,1 / 4$ ) to (4, 1/4) | A1 |  | Candidate's choice of scale. BOD this horizontal line. |
|  | $\mathrm{f}(x)=1 / 8(6-x)$ for $4 \leq x \leq 6$ | M1 |  | OE Allow this M1 if seen in (b) PI by correct line |
|  | Straight line joining (4, $1 / 4$ ) to $(6,0)$ | A1 | 5 |  |
| (b) | $\int_{1}^{4} \frac{1}{4} x \mathrm{~d} x \quad \text { and } \quad \int_{4}^{6} \frac{1}{8} x(6-x) \mathrm{d} x$ | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$ |  | For both integrands correct Including correct limits for both |
|  | $\mathrm{E}(X)=\left[\frac{x^{2}}{8}\right]_{1}^{4}+\left[\frac{3 x^{2}}{8}-\frac{x^{3}}{24}\right]_{4}^{6}$ | A1 |  | Integrations done correctly and added |
|  | $=3^{1 / 24}$ or 73/24 | A1 | 4 | Or AWRT 3.04 |
|  |  |  | 9 |  |



