Version 1.0

General Certificate of Education (A-level) June 2013

Mathematics

MS2B

(Specification 6360)

Statistics 2B

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2013 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

Key to mark scheme abbreviations

Μ	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
Е	mark is for explanation
\sqrt{or} ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

0	Solution	Marks	Total	Comments
1(a)	$\overline{x} = 948$ and $s^2 = 4817.25$	B1		Both; AWRT 4820 (<i>s</i> = 69.406)
	$t_8 = 2.896$	B1		AWRT 2.90
	C.I. = $948 \pm 2.896 \times \sqrt{\frac{4817.25}{2}}$	M1		For division by $\sqrt{9}$
	γ 9	m1		For rest of expression, must be t_8 or $t_9 (= 2.821)$
	$= 948 \pm 67.0 = (881, 1015)$	A1	5	Either form AWRT ± 67 Accept 1010 or 1020 as upper limit
(b)(i)	$(927 + 1063) \div 2 = 995$	B1	1	CAO
(ii)	Dependent on partial overlap			
	Because of the overlap by the confidence intervals	E1		
	no definite conclusion is possible	Edep1	2	Accept "No evidence"
SC	Reference to evidence provided by the mean or the limits being lower 'suggesting' or 'providing evidence' or 'supporting' weight reduction scores 1	(E1)		The statement must be not definite. Anything definite, eg. 'proves that' or 'shows that' scores 0
	Total		8	

0	Solution			Marks	Total	Comments
2(a)			Jonation	101ul ISS	Iotui	
_(4)	O_i	E_i	$(O_i - E_i - 0.5)^2 / E_i$	M1		<i>E</i> attempted (at least two correct to 1 d.p.)
	30 14	8.8	2.5102	M1		Yates' correction attempted; at least one
	130	124.8	0.1770			correct value in final column
	26	$\frac{31.2}{\chi^2}$	4.0228	M1		χ^2 attempted
				A1		AWFW 4.02 to 4.03
	H ₀ : No	associatio	on between method of			
	rece	iving info	ormation and outcome	E.		At least one correct
	H. Acc	sociation 1	between method of	BI		If "independent" used it must be the
	rece	iving info	prmation and outcome			right way round
	CV of	χ^2 for 1	df = 3.84(1)	B1		
	4.02 > 3	3.841 so re	eject H ₀			
	There is	significa	nt evidence of an			
	associat	ion betwe	een method of receiving	Al		Dep on A1 and B1 for CV
	morma		Jucome			
	Applications higher than expected for					Dep on previous A1
	seems to be true			Adep1	8	Context conclusion about council's belief.
						referring to higher than expected for telephone
	Altonno	tivo if Vo	tos' not used			1
	Alterna		ites not used			
	O_i	E_i	$(O_i - E_i)^2 / E_i$			Loses M1 for Yates' and A1 for final χ^2
	30	35.2	0.7682			value but can score all the other 6 marks
	14	8.8 124.8	0.2167			
	26	31.2	0.8667			Final 2 A1 marks dep on 4.92 to 4.93
		χ^2	4.9243			and B1 for CV
(b)	Type I e	error was	made because	E1		
	H ₀ has t	been rejec	ted (when it was true)	Edep		Dep on previous E1
SC	If 'H ₀ a	accepted'	when			
	their χ^2	less that	n their CV			
	No erro	r was mac	le because	(E1)	2	
	H_0 has t	been acce	ptea (when it was true) Total	(Edep1)	<u> </u>	Dep on previous (E1)
			i Utal		10	

0	Solution	Marks	Total	Comments
3(a)(i)	Just catches a tram	E1		Must refer to the 0 in some way to score
				the E1
	= 2 (+ 0) + 20 + 5 = 27	B1		but can score B1 for
				2 + 20 + 5 = 27
		54		
(ii)	b = 37	BI	3	
	F(T) = 22	D1		
(U)	E(1) - 52	DI		
	$Var(T) = 10^2/12$			
	$= 100/12 = 25/3 = 8^{1}/_{3} = 8.33$	B1	2	Any form
(c)	(35 - 27) = 8	M1		Or by integration from 27 to 35
	$\times 0.1 = 0.8$	A1	2	
	Total		7	
4(a)(i)	$e^{-3.5} \times 3.5^4$	M1		
	4!		2	
	= 0.189	A1	2	AWRT 0.189 Answer only gets B2
		-		
(ii)	Using or stating Po(0.5)	BI		An answer of 0.0144, 0.3935, 0.6065,
				0.9098 or 0.9856 implies award of BI
	P(>2) = 1 - P(<1)	M1		
	r (2) = 1 - 1 (21) or $= 1 - 0.9098$	1011		
	= 0.0902	A1	3	Accept 0.09
(iii)	Using Po(14)	B1		Sight of 0.1094, 0.1757, 0.9235, 0.9521
	$P(\le 19) - P(\le 10) = 0.9235 - 0.1757$	M1		Allow 0.8752 – 0.1185
				or $0.9573 - 0.2517$ for M1
	-0.7478	Δ1	3	AWFW 0.747 to 0.748
	- 0.7770	111	5	
(b)	GRBs/explosions/events/etc will be			
	random and/or independent			
		E1	1	For any valid point
	GRBs/etc short in comparison to			
	observation period (non-overlapping)			
	Total		9	

Q	Solution	Marks	Total	Comments
5(a)(i)	$1 - (\frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6})$	M1		OE
	$= \frac{1}{20} = 0.05$	A1	2	AG
(11)	$E(X) = \frac{1}{2} \sum_{k=1}^{1} \frac{1}{2} \sum_{k=1}^{$	M1		At loost 2 torms
	$1 \times /_{3} + 2 \times /_{4} + 3 \times /_{5} + 4 \times /_{6} + 3 \times /_{20}$ - 2 35		2	OF: give B2 for only 2.35 seen
	- 2.55	711	2	
(iii)	$E(X^2) =$			
	$1 \times \frac{1}{3} + 4 \times \frac{1}{4} + 9 \times \frac{1}{5} + 16 \times \frac{1}{6} + 25 \times \frac{1}{20}$	M1		All 5 terms
	(= 7.05)			$E(X^2) = 7.05$ with no working scores M0
				Correct working but labelled $Var(X)$ and
				then no more done also scores MU
	$Var(X) = F(X^{2}) - F(X)^{2}$	m1		Applied to this problem
	= 1.5275	A1	3	AG
(iv)	$\frac{1 - (\frac{1}{3} + \frac{1}{4})}{5} \text{ or } (\frac{1}{5} + \frac{1}{6} + \frac{1}{20})$	M1	2	
	$= \frac{1}{12}$ or 0.41/	AI	2	AWRT Accept answer only for B2
(b)	'2 35' × 100 – 50	M1		Their value of mean
	= 185	A1F		FT from (a)(ii)
				Give B2 for only 185 seen
	$100^2 \times 1.5275$ or $100 \times \sqrt{1.5275}$	M1		
		A 1	4	
	$SD = \sqrt{15275} = 5\sqrt{611} = 124$	AI	4	AWFW 123.5 to 124 or 5\611 Give B2 for only 123.5 to 124
				r = 51611 seen
	Total		13	
	10tai	l	15	

0	Solution	Marks	Total	Comments
6(a)	H ₀ : $\mu = 175$			Both; accept H ₀ : $\mu \ge 175$
	H ₁ : $\mu < 175$	B1		Do not accept mean or \overline{x}
				but accept population mean
	$\overline{x} = 169.1$	D1		
	x = 108.1	DI		
	$z = \frac{168.1^{\circ} - 175}{2.14}$	M1		For use of $9.4/\sqrt{6}$
	9.4	m1		For rest of formula (ignore sign)
	1 798	A1		Must be negative AWRT -1.80
	CV = -1.6449	B1		AWFW -1.64 to -1.65
	-1.6449 > -1.798 so test statistic in			Comparison of correct test statistic with
	critical region	A1	7	correct CV must be seen (diagram or
	Reject H_0 , significant evidence that batch			words)
	mean is less than 1/5grams			OE; suspicion supported
				Must be in context AG
(b)	H ₀ : $\mu = 175$			Award B1 for both correct if not scored
	$H_1: \mu < 175$			in (a)
	$t = \frac{169.4 - 175}{1000}$	M1		For use of $11.2/\sqrt{20}$
	$11.2/\sqrt{20}$	1		
	/ \sqrt{20}			For rest of formula (ignore sign)
	=-2.236	AI D1		Must be negative AWR1 -2.24
	$CV(l_{19}) = -2.539$	DI		AWKI -2.34
	-2.236 > -2.539 so test statistic not in			
	critical region			Comparison of correct test statistic with
	Accept H_0 , no significant evidence that	A1	5	OE: suspicion not supported
	batch mean/weight is less than 1/5grams			
(c)	Because the significance level is 1%			OE: eg SL is different
	instead of 5%	E1	1	Reference to sample size \Rightarrow E0
	Total		13	

Q	Solution	Marks	Total	Comments
7(a)		B1		Curve concave upwards between $(0, 0)$ and $(1, y_1)$
		B1		Negative gradient line between (1, y_1) and (2, y_2) with $y_2 > 0$ (and not beyond 2)
		B1	3	$y_1 = 1$ and $y_2 = \frac{1}{3}$ shown
(b)(i)	Attempt to integrate t^2 between 0 and x	M1		Accept integral of x^2
	$F(x) = \frac{1}{3}x^3$	A1	2	
(ii)	Their $F(x) = 0.25$	M1		
	<i>x</i> = 0.909	A1	2	AWRT; accept $^{3}\sqrt{0.75}$ OE
(c)(i)	$F(1) = \frac{1}{3}$	B1		
	$\int_{1}^{x} \frac{1}{3} (5-2t) dt = \left[\frac{1}{3} (5t-t^{2}) \right]_{1}^{x}$	M1		For integral attempted with correct limits
	$=\frac{1}{3}(5x-x^2)-\frac{4}{3}$	A1		For limits substituted in correct expression
	$F(x) = \frac{1}{3} (5x - x^2) - \frac{4}{3} + \frac{1}{3}$	A1	4	F(1) added to give complete $F(x)$
	$=\frac{1}{3}(5x-x^2-3)$			AG
(ii)	$\frac{1}{3}(5q-q^2-3) = 0.75$ or	M1		Setting up equation
	integral of f(x) from q to $2 = 0.25$ $4q^2 - 20q + 21 = 0$ or $q^2 - 5q + 5.25 = 0$	A1		Reaching correct simplified quadratic
	(2q-3)(2q-7) = 0 or $q = 2.5 \pm 1$	m1		Factorising for two solutions or using formula or calculator
	q = 1.5	A1	4	Selecting only this one
	Total		15	
	TOTAL		75	