

General Certificate of Education (A-level) June 2011

Mathematics

MS2B

(Specification 6360)

Statistics 2B

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2011 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
Jor ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
$-x$ EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied SCA
substantially correct approach	
cf	candidate
dp	significant figure(s)
decimal place(s)	

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
3(a)	H_{0} : no association (between type of school and performance of 16 year olds in their GCSEs)	B1	1	H_{0} : type of school and performance of 16 year olds in their GCSEs independent
(b)	$\frac{(O-E)^{2}}{F}$			
	$\begin{gathered} E E \\ 0.195819311 \\ 0.482160711 \\ 0.003569447 \\ 1.080536181 \end{gathered}$	M1		Attempt at $\frac{(O-E)^{2}}{E}$ (≥ 4 correct values seen to 2 dp)
	$\begin{aligned} & 0.062507172 \\ & 1.269422099 \\ & 0.785491128 \\ & 0.183802623 \end{aligned}$			
	$\begin{aligned} & 0.541856652 \\ & 0.044011976 \\ & 3.274102564 \\ & 4.096492891 \end{aligned} \quad \begin{aligned} & \\ & \end{aligned} \quad X^{2}=\sum \frac{(O-E)^{2}}{E}$	m1		Attempt to add ≥ 8 terms
	$\begin{aligned} & =12.01977275 \\ & =12.0(1 \mathrm{dp}) \end{aligned}$	A1	3	Allow $11.9 \leq X^{2} \leq 12.1 \Rightarrow \mathrm{M} 1 \mathrm{~m} 1$ CAO
(c)	$v=6 \Rightarrow \chi_{1 \%}^{2}=16.8(12)$	B1,B1		$v=6$ can be implied by $\chi_{1 \%}^{2}=16.8(12)$
	No (significant evidence to suggest an) association between (type of) school and (GCSE) performance (of 16 year olds)	Adep1	3	Insufficient/no evidence to support Emily's belief. School and performance are independent. Correct conclusion in context Dep on B1M1m1B1B1 given in (a), (b), (c) and $11.9 \leq X^{2} \leq 12.1$
(d)	More than expected gained at least / more than 5 GCSEs Fewer than expected gained at least / more than 1 GCSE but less than 5 GCSEs Fewer than expected gained no GCSEs			Since conclusion of no association between school and GCSE performance, it may be misleading to look at individual differences in any great detail
		B1	1	Any one of these 4 comments seen
(e)	$\chi_{10 \%}^{2}=10.6(45)$	B1		Correct value of χ^{2} only
	Reject H_{0} at 10% level of significance. (Evidence to suggest) an association between (type of) school and (GCSE) performance	Bdep1	2	Evidence to support Emily's (Joanne's) belief. (Type of) school + (GCSE) performance dependent. Dep on B1M1m1 and $11.9 \leq X^{2} \leq 12.1$ and B 1 in (e)
	Total		10	

MS2B (cont)

Q	Solution	Marks	Total	Comments
5(a)	$\begin{aligned} & Y \sim \mathrm{~N}\left(\mu_{y}, 640^{2}\right) \\ & n=25 \text { and } \bar{y}=19700 \end{aligned}$			
	$\mathrm{H}_{0}: \mu_{y}=20000$			
	$\mathrm{H}_{1}: \mu_{y} \neq 20000$ (both)	B1		Alternative:
				$\mathrm{P}(\bar{Y}<19700)=\mathrm{P}(\mathrm{Z}<-2.34375)$
	$\bar{Y} \sim \mathrm{~N}\left(20000, \frac{640^{2}}{25}\right)$			$\begin{aligned} & =1-0.99036 \\ & =0.00964 \geq 0.005 \quad \text { Accept } \mathrm{H}_{0} \end{aligned}$
	$z=\frac{19700-20000}{640 / \sqrt{25}}$	M1		(-2.35 to -2.34)
	$=-2.34375$	A1		(± 2.57 to ± 2.58)
	$z_{\text {crit }}= \pm 2.5758$	B1		Use of $t \Rightarrow$ max B1M1A1
	Accept H_{0}	Adep1		dep on B1M1B1
	Insufficient / no evidence (to suggest) that the mean (lifetime) has changed (from 20000 hours)	Edep1	6	dep on Adep 1
	Mean (lifetime) has not changed at 1% level (of significance)			If incorrect hypotheses then B0 \Rightarrow max M1A1B1 ie final Adep1Edep 1 not available
(b)(i)	$\mu<10000$	B1	1	
(ii)	$n=16$ and $s=500 ; t_{\text {crit }}=1.753$	B1		For $t_{\text {crit }}$ (ignore signs)
	$\operatorname{sd}(\bar{X})=\frac{500}{\sqrt{16}}(125)$	B1		Ignore notation
	$10000 \pm 1.753 \times \frac{500}{\sqrt{16}}$ (considered)	M1		M0 if only considered upper value No ft on incorrect t value
	Choose 9780 (3sf)	A1		AWFW 9780 to 9781 (ignore inequality)
	(\Rightarrow critical region: $\bar{x}<9780$)			If z used then max B0B1M0A0A0
	\therefore Range of values for \bar{x} which leads Christine not to reject $\mathrm{H}_{0}: \mu=10000$ is: $\bar{x}>9780$	A1	5	Allow $\bar{x} \geq 9780$ to 9781
(iii)	No error	B1	1	Ignore any subsequent statements
	Total		13	

Q	Solution	Marks	Total	Comments
6(d) cont	OR $\int_{1 \frac{1}{2}}^{2} \frac{1}{4}(5-2 x) \mathrm{d} x=\frac{3}{16}$ etc (M1A1) NB statement $F(1.5)-\frac{3}{4}=\frac{1}{16}$ (OE) scores 4 marks Alternative: $\begin{align*} & \int_{q}^{1.5} \frac{1}{4}(5-2 x) \mathrm{d} x=\left[-\frac{1}{16}(5-2 x)^{2}\right]_{\frac{5-\sqrt{5}}{2}}^{1.5} \\ & =-\frac{1}{16}(4)-\left[-\frac{1}{16}(\sqrt{5})^{2}\right] \text { (sub) } \tag{M1}\\ & =-\frac{4}{16}+\frac{5}{16} \tag{A1}\\ & =\frac{1}{16} \tag{A1} \end{align*}$			OR $\begin{equation*} \int_{q}^{1.5} \frac{1}{4}(5-2 x) \mathrm{d} x=\frac{1}{4}\left[5 x-x^{2}\right]_{q}^{1.5} \tag{M1} \end{equation*}$ (correct integration and limits) Allow use of $q=1.38$ to $q=1.382$ in limits for M1 Whatever follows must be exact $\begin{equation*} =\frac{1}{4}\left[(7.5-2.25)-\left(5 q-q^{2}\right)\right] \tag{A1} \end{equation*}$ for use of $5 q-q^{2}=5$ or showing $5 q-q^{2}=5$ by substituting $q=\frac{1}{2}(5-\sqrt{5})$ $\begin{equation*} =\frac{1}{4}[5.25-5]=\frac{1}{16} \tag{A1} \end{equation*}$ Alternative using $\mathrm{F}(x)$: for $1 \leq x \leq 2$ $\begin{align*} & \mathrm{F}(x)=\frac{1}{2}+\int_{1}^{x} \frac{1}{4}(5-2 x) \mathrm{d} x \\ & =\frac{1}{2}+\frac{1}{4}\left[5 x-x^{2}\right]_{1}^{x} \\ & =\frac{1}{2}+\frac{1}{4}\left[\left(5 x-x^{2}\right)-(5-1)\right] \\ & =\frac{1}{4}\left(2+5 x-x^{2}-4\right) \\ & =\frac{1}{4}\left(5 x-x^{2}-2\right) \quad \text { (seen or used) } \tag{M1}\\ & \begin{aligned} & \mathrm{F}(1.5)=\frac{1}{4}(7.5-2.25-2)=\frac{3.25}{4} \\ & \quad=0.8125=\frac{13}{16} \\ & \mathrm{~F}(q)=\frac{1}{16}(50-10 \sqrt{5}-(25-10 \sqrt{5}+5)-8) \\ & \quad=\frac{12}{16} \text { OE } \\ & \mathrm{P}(q<X<1.5)=\frac{13}{16}-\frac{12}{16}=\frac{1}{16} \end{aligned} \end{align*}$
	Total		14	
	TOTAL		75	

