

A-LEVEL Mathematics

Mechanics 5 – MM05 Mark scheme

6360 June 2015

Version/Stage: 1.0: Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Copyright © 2015 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Μ	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and
	accuracy
E	mark is for explanation
√or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
С	candidate
sf	significant figure(s)
dp	decimal place(s)

Key to mark scheme abbreviations

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Mark	Tot	Comment
			al	
1.(a)	$0.8 = 0.2\omega$	M1		M1: Use of $0.8 = 0.2\omega$ or $0.2 = 0.8\omega$
	m-4	A1		A1: Correct ω
				A1: Correct period (1.57)
	Period = $\frac{2\pi}{2\pi} = \frac{\pi}{2\pi}$		•	
	4 2	AI	3	
1.(b)	$v^2 = 4^2 (0.2^2 - 0.1^2)$	M1A1		M1: Seeing $(0.2^2 - 0.1^2)$ or
	$\sqrt{2}$ $\sqrt{2}$ $\sqrt{3}$ $\sqrt{2}$ $\sqrt{3}$	A1	3	$(0.4^2 - 0.3^2)$ in an equation.
	$v = \sqrt{0.48} = \frac{1}{5} = 0.693 \mathrm{m s}^2$		_	A1: Correct equation.
	5			A1: Correct speed.
1. (c)	$s = 0.2 - 0.2\cos(4t)$	B1B1B1	3	B1: Seeing 0.2
				B1: Seeing 0.2cos
				B1: Seeing $4t$.
1. (d)	$0.1 = 0.2 - 0.2\cos(4t)$	M1		M1: Using 0.1 and answer to (c0 to form
	$\cos(4t) = 0.5$			an equation.
	$t = 0.262 \mathrm{s}$	A1		A1: Correct equation.
		A1	3	A1: Correct time.
	Total		12	

Q	Solution	Mark	Total	Comment
2	$T_1 = \frac{1}{4} \times 2\pi \sqrt{\frac{1.2}{g}} = 0.54966$ $T_2 = \frac{1}{4} \times 2\pi \sqrt{\frac{0.7}{g}} = 0.41981$ $T_1 + T_2 = 0.54966 + 0.41981 = 0.969 \text{ s (to 3 sf)}$	M1A1 A1 A1	4	M1: Obtaining two times and adding.A1: One correct time.A1: Second correct time.A1: Correct total time.
	Total		4	

Q	Solution	Mark	Total	Comment
3. (a)	$\dot{ heta} = 2$	B1		B1: Seeing or clear use of $\dot{\theta} = 2$.
	$\theta = 2t$			B1: Correct expression for \dot{r} in terms of t
	$\ddot{\theta} = 0$			B1: Correct expression for \ddot{r} in terms of t
	$1 a\theta = 2at$			M1: Use or radial formula.
	$r = \frac{-ae^{ab}\theta}{2} = ae^{2ab}$	B1		A1: Correct radial acceleration.
	$\ddot{r} = \frac{1}{a^2}a^2\dot{\theta}\dot{\theta}\dot{\theta}^2 + \frac{1}{a}a^{a\theta}\ddot{\theta}\dot{\theta} - 2a^2a^{2at}$			A1: Correct transverse acceleration
	$r = \frac{1}{2}u e + v + \frac{1}{2}u e + v = 2u e$	B1		
	Radial:			
	$\ddot{r} - r\dot{\theta}^2 = 2a^2e^{2at} - 4 \times \frac{1}{2}e^{2at}$			
	2^{2at}	M1		
	$=2e^{2at}(a^2-1)$	A1		
	Transverse:		_	
	$2\dot{r}\dot{\theta} + r\ddot{\theta} = 2ae^{2at} \times 2 = 4ae^{2at}$	MIAI	7	
3. (b)	2at 1	B1		B1: Using initial value to get expression to
	$e^{-1} = 1$	DI		eliminate <i>t</i> .
	$(2(a^2 - 1))^2 + (4a)^2 = 20^2$	M1		M1: Finding magnitude.
	$4a^4 + 8a^2 + 4 = 400$	A1		A1: Correct magnitude in terms of <i>a</i> .
	$a^4 + 2a^2 - 99 = 0$			M1: Solving for a^2
	$(a^2 + 11)(a^2 - 9) = 0$	M1		A1: Correct values of <i>a</i>
	$a = \pm 3$	A1	5	
	Total		12	

Q	Solution	Mark	Total	Comment
4. (a)	$V_{AB} = 2mga\sin\theta$ $V_{BC} = mg\frac{a}{2}\cos\theta$	M1A1		M1: Two GPE terms found. A1: Both correct. M1: EPE for one string.
	$V_A = \frac{1}{2} \times \frac{2mg}{a} (5a - a - 2a\sin\theta)^2$ = $4mga(2 - \sin\theta)^2$ = $4mga(4 - 4\sin\theta + \sin^2\theta)$ $V_B = \frac{1}{2} \times \frac{8mg}{a} (5a - a - a\cos\theta)^2$	M1A1		A1: Correct EPEM1: EPE for other string.A1: Correct EPEA1: Correct total from correct working.
	$= 4mga(4 - \cos\theta)^2$ $= 4mga(16 - 8\cos\theta + \cos^2\theta)$	M1A1		
	$V = \frac{mga}{2} (4\sin\theta + \cos\theta + 32 - 32\sin\theta + 8\sin^2\theta + 128 - 64\cos\theta)$	A1	7	
	$=\frac{mga}{2}(168-63\cos\theta-28\sin\theta)$			
4. (b)	$\frac{dV}{d\theta} = \frac{mga}{2} (63\sin\theta - 28\cos\theta)$ $\frac{mga}{2} (62\sin\theta - 28\cos\theta) = 0$	M1A1		M1: Differentiating energy expression. A1: Correct derivative. M1: Solving to obtain $\tan \theta$
	$\frac{1}{2}(03\sin\theta - 28\cos\theta) = 0$ $\tan\theta = \frac{28}{63} = \frac{4}{9}$	M1A1 A1	5	A1: Correct value for $\tan \theta$ A1: Correct θ . (Accept 23.96°)
4. (c)	$\theta = 0.418$ $\frac{d^2V}{d^2r^2} = \frac{mga}{2}(63\cos\theta + 28\sin\theta)$	M1		M1: Finding second derivative. A1: Correct derivative.
	$\frac{d\theta^2}{\theta} = 0.418 \Longrightarrow \frac{d^2 V}{d\theta^2} = \frac{mga}{2} \times (68.9) > 0$	A1		A1: Correct conclusion.
	Stable	A1	3	
	Total		15	

Q	Solution	Mark	Total	Comment
5. (a)	2g = 24e	M1A1		M1: Using Hookes Law.
	2 g			A1: Correct extension.
	$e = \frac{3}{24}$			A1: Correct distance.
	2a 49 21 7			
	$x = \frac{28}{24} + 0.35 = \frac{49}{60} + \frac{21}{60} = \frac{7}{6}$	A1	3	
	24 00 00 0		Ũ	Accept 1.17
5. (b) (i)	$d^2 r dr$			M1: Suitable four term equation.
	$2\frac{a^{2}x}{h^{2}} = 2g - 14\frac{ax}{h} - 24(x - 0.35)$	M1A1		A1: Three terms correct.
	dt^{-} dt	A1		A1: All terms correct.
	$\frac{d^2x}{dx} + 7\frac{dx}{dx} + 12x = 9.8 + 12 \times 0.35$			
	$dt^2 + dt + 12x = 9.0 + 12 \times 0.55$			
	$d^2x - dx$			
	$\frac{dt^2}{dt^2} + 7\frac{dt}{dt} + 12x = 14$	A1	4	
5. (b) (ii)	PI			B1: Correct PL
	7			M1: Ouadratic equation for λ .
	$x = \frac{1}{6}$	B1		A1: correct values for λ .
	CF			dM1: Using initial values to obtain an
	$\lambda^2 + 7\lambda + 12 = 0$	M1		equation containing A and B.
	(2 + 3)(2 + 4) = 0			Al: Correct equation.
	$(\lambda+3)(\lambda+4) = 0$			dWIT: Using derivative to obtain a second equation for A and B
	$\lambda = -3$ or $\lambda = -4$	A1		A1: Correct equation.
	$x = Ae^{-3t} + Be^{-4t}$			A1: Value of A correct.
	$r - Ae^{-3t} + Be^{-4t} + \frac{7}{2}$			A1: Value of B correct.
	6			A1: Correct final expression.
	x = 1.8, t = 0			
	$1.8 = A + B + \frac{7}{2}$			
	6	dM1A1		
	$A + B = \frac{19}{20}$			
	$\frac{30}{dx}$			
	$\frac{dx}{dt} = -3Ae^{-3t} - 4Be^{-4t}$			
	$\begin{vmatrix} u \\ \dot{x} - 0 \\ t - 0 \end{vmatrix}$			
	x = 0, i = 0	dM1A1		
	0 = -3A - 4B			
	$A = -\frac{4B}{2}$	A 1		
	3	AI		
	$A = \frac{38}{38}, B = -\frac{19}{38}$			
	15 10	A1		
	$x = \frac{38}{15}e^{-3t} - \frac{19}{10}e^{-4t} + \frac{7}{5}$			
	15 10 6	A1		
			10	
5 (b) (iii)	Heavy damning	R 1	10	B1: Correct statement
5. (5) (iii)	Total		18	
L				I

Q	Solution	Mark	Total	Comment
6. (a)	$T = M \frac{dv}{dv}$	B1		B1: Correct equation for block.
	dt			M1: Impulse-momentum equation with
	$(mg - T)\partial t = (m + \partial m)(v + \partial v) - \partial mv - mv$	M1A1		mg - T or $T - mg$.
	$= m \partial v$			A1: Correct equation.
	$mg - M \frac{dv}{dt} = m \frac{dv}{dt}$	Δ1		A1: Correct differential equation.
	dv			M1: Use of expression for mass and it's
	$mg = (m+M)\frac{dt}{dt}$			A 1: Correct final expression
	$m = M - \lambda t$	dM1		A1. Contect multi expression.
	$\frac{dv}{dt} = \frac{mg}{dt}$			
	dt = m + M			
	$\frac{dv}{dt} = \frac{(M - \lambda t)g}{2M - \lambda t}$. 1		
	$dt = 2M - \lambda t$	AI	6	
6. (b)	$dv (M - \lambda t)g$			M1: Splitting RHS into two terms, with
	$\frac{dt}{dt} = \frac{1}{2M - \lambda t}$			one a constant.
	Mg			dM1: Integrating to obtain linear and ln
	$=g-\frac{1}{2M-\lambda t}$	M1		terms
	$y = at + \frac{Mg}{Mg} \ln(2M - \lambda t) + c$	dM1		A1: Correct integral.
	$\lambda = g_i + \lambda$ $m(2M - \lambda_i) + c$	AI		dM1: Use of initial conditions.
	$v = 0, t = 0 \Longrightarrow c = -\frac{Mg}{\ln(2M)}$	dM1		A1. Confect final expression.
	λ	GIVII		
	$v = gt + \frac{Mg}{\ln\left(\frac{2M - \lambda t}{\lambda}\right)}$	A1	5	
	$\lambda (2M)$			
6. (C)	$t = \frac{M}{M}$	M1		M1: Use of correct value of t.
	λ	1/11		A1: Simplified correct time
	$Mg = Mg = Mg_{1n}(1)$			
	$V = \frac{1}{\lambda} + \frac{1}{\lambda} \ln \left(\frac{1}{2}\right)$	A1		
	Mg (1 1 2)			
	$=\frac{-1}{\lambda}(1-\ln 2)$	AI	3	
	Tota	1	14	
	ΤΟΤΑΙ	-	75	