A-LEVEL Mathematics

MMO4 - Mechanics 4
Mark scheme

6360
June 2016

Version 1.0: Final Mark Scheme

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
Vor ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q1	Solution	Mark	Total	Comment
	Angular momentum before $=I \omega=10 I$ MI of particle after collision $=0.6(0.25)^{2}$ Angular momentum after $=$ $8\left(I+0.6(0.25)^{2}\right)$ Conservation of angular momentum gives $10 I=8\left(I+0.6(0.25)^{2}\right)$ $I=0.15$	B1 M1 A1 M1 A1 A1	6	Correct initial angular momentum MI for particle after collision - seen Correct total angular momentum after collision M1 Forming equation using their conservation of momentum expressions. A1 Fully correct equation Correct value of I found - CSO
	Total		6	

ALTERNATIVE $\begin{aligned} & \cos \theta=\frac{\|\mathbf{r} \cdot \mathbf{F}\|}{\|\mathbf{r}\|\|\mathbf{F}\|} \\ & \text { r.F }=-14 \\ & \theta=\cos ^{-1}\left\|\frac{-14}{\sqrt{56} \sqrt{26}}\right\|=68.475 \ldots \ldots \end{aligned}$ 68° to nearest degree	(B1) (M1) (A1) (A1)	(4)	r. \mathbf{F} correct (could also use $\mathbf{r} . \mathbf{F}=-7$) M1 Use of scalar product with correct vector pair. A1 All correct values seen and used (could also use $\|\mathbf{r}\|=\sqrt{14} \quad\|\mathbf{F}\|=\sqrt{26}$) Must be to the nearest degree - CAO
Total		10	

Q5	Solution	Mark	Total	Comment
(a)	$\mathbf{F}=\mathbf{i}+4 \mathbf{j}$	B1	1	B1 both components correct
(b)	Take moments about the origin			
	Moment of \mathbf{F} acting at $-4 \mathbf{i}+6 \mathbf{j}=-22 \mathbf{k}$	M1A1		M1 For use of $\mathbf{r x F}$ or $\mathbf{F x r}$ A1 correct magnitude
	$\begin{aligned} & \text { Moment of } \mathbf{F}_{1}=2 \mathbf{i}+\mathbf{j} \text { acting at } \mathbf{i}-\mathbf{j} \\ & =3 \mathbf{k} \\ & \text { Moment } \mathbf{F}_{2}=3 \mathbf{i}-2 \mathbf{j} \text { acting at } 4 \mathbf{i}-2 \mathbf{j} \\ & =-2 \mathbf{k} \end{aligned}$	M1		Use of $\mathbf{r x F}$ or $\mathbf{F x r}$ to find moments of three individual forces
	Moment $\mathbf{F}_{3}=-4 \mathbf{i}+5 \mathbf{j}$ acting at $-3 \mathbf{i}+\mathbf{j}$ $=-11 \mathbf{k}$	A(2,1,0)		A2 all magnitudes correct A1 two magnitudes correct
	Hence			
	$-22 \mathbf{k}+\mathbf{G}=3 \mathbf{k}-2 \mathbf{k}-11 \mathbf{k}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$		M1 forming moment equation A1 fully correct equation - including consistent signs
	Hence $\|\mathbf{G}\|=12$	A1	8	CSO
	ALTERNATIVE 1			
	Take moments about the origin			
	Moment of single force $=-1(6)-4(4)=-22$	(M1A1)		M1 For correct pairings - force x distance A1 correct magnitude
	Total moment of individual forces			
	$\begin{aligned} & =1(1)+2(1)+3(2)-2(4)+4(1)-5(3) \\ & =-10 \end{aligned}$	$\begin{gathered} \text { (M1 A1) } \\ \text { (A1) } \end{gathered}$		M1 For correct pairings - force x distance A1 all signs consistent A1 correct magnitude
	$-22+\mathbf{G}=-10$	(M1A1)		M1 forming moment equation
	Hence $\|\mathbf{G}\|=12$	(A1)		A1 correct equation - consistent signs CSO
	ALTERNATIVE 2		(8)	
	Take moments about $(-4,6)$ for system	(M1A1)		M1A1 For three correct vertical force and
	$=-4(5)+5(1)+1(5)+2(7)+3(8)-2(8)$	(M1A1)		distance pairings
	$\begin{aligned} & =-20+5+5+14+24-16 \\ & =12 \end{aligned}$	$\begin{aligned} & \text { (A1) } \\ & \text { (A1) } \end{aligned}$		M1A1 For three correct horizontal force and distance pairings A1 all signs consistent A1 correct evaluation
	$\begin{aligned} & 0+\mathbf{G}=12 \\ & \text { Hence }\|\mathbf{G}\|=12 \end{aligned}$	(M1) (A1)	(8)	M1 forming moment equation CSO
	Total		9	

	Differentiating both sides $2 \dot{\theta} \ddot{\theta}=\frac{g \theta \dot{\theta}}{3 a}$ Hence cancelling gives $\ddot{\theta}=\frac{g}{6 a}$	m1 A1	(6)	Differentiating to obtain angular acceleration CAO
	Total		11	

Q7	Solution	Mark	Total	Comment
(a)	MI about G for rod $=\frac{2 m(4 a)^{2}}{3}=\frac{32 m a^{2}}{3}$	B1		Correct MI for rod - can be unsimplified
	MI about $\mathrm{B}=\frac{32 m a^{2}}{3}+2 m a^{2}=\frac{38 m a^{2}}{3}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	3	Correct application of parallel axis theorem Fully correct - CAO
(b)(i)	$\text { KE gained }=\frac{1}{2}\left(\frac{38 m a^{2}}{3}\right) \dot{\theta}^{2}$	B1F		Correct KE - follow through part (a)
	PE lost $=2 m g a \sin \theta$	B1		Correct use of $m g h$
	Use conservation of energy			
	$\frac{1}{2}\left(\frac{38 m a^{2}}{3}\right) \dot{\theta}^{2}=2 m g a \sin \theta$	M1		Form an equation using conservation of energy
	$\dot{\theta}^{2}=\frac{12 m g a \sin \theta}{38 m a^{2}}=\frac{6 g \sin \theta}{19 a}$			
	Hence angular speed is $\sqrt{\frac{6 g \sin \theta}{19 a}}$	A1	4	CSO - printed answer - AG
(b)(ii)	Differentiating $\dot{\theta}^{2}$ gives			
	$2 \dot{\theta} \ddot{\theta}=\frac{6 g \cos \theta}{19 a} \dot{\theta}$	M1		One side correct
	Hence $\ddot{\theta}=\frac{3 g \cos \theta}{19 a}$	A1	2	CAO
	ALTERNATIVE For 7(a)			
	Using integration $\rho=\frac{m}{4 a}$ and MI elemental piece $=\rho x^{2} d x$	(B1)		Both needed
	$\begin{aligned} & \text { MI of rod }= \\ & \int_{-3 a}^{5 a} \rho x^{2} d x={ }_{-3 a}^{5 a}\left[\frac{\rho x^{3}}{3}\right]=\frac{152 \rho a^{3}}{3} \end{aligned}$	(M1)		Integration completed and limits used
	$=\frac{38 m a^{2}}{3}$	(A1)	(3)	CAO

