## AQA

Please write clearly in block capitals.

Centre number


Candidate number


Surname
Forename(s)
Candidate signature $\qquad$

## A-level

## MATHEMATICS

## Unit Mechanics 3

## Wednesday 7 June 2017 Morning

## Materials

For this paper you must have:

- The blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

## Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Write the question part reference (eg (a), (b)(i) etc) in the left-hand margin.
- You must answer each question in the space provided for that question. If you require extra space, use an AQA supplementary answer book; do not use the space provided for a different question.
- Do not write outside the box around each page.
- Show all necessary working, otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want

| For Examiner's Use |  |
| :---: | :---: |
| Question | Mark |
| 1 |  |
| 2 |  |
| 3 |  |
| 4 |  |
| 5 |  |
| 6 |  |
| 7 |  |
| TOTAL |  | to be marked.

- The final answer to questions requiring the use of calculators should be given to three significant figures, unless stated otherwise.
- Take $g=9.8 \mathrm{~m} \mathrm{~s}^{-2}$, unless stated otherwise.


## Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 75 .


## Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.


## Answer all questions.

Answer each question in the space provided for that question.

1 Bernoulli's equation for fluid flow at any point in a streamline is

$$
\frac{1}{2} \rho v^{2}+\rho g h+P=C
$$

where $\quad \rho \mathrm{kg} \mathrm{m}^{-3}$ is the density of the fluid;
$v \mathrm{~m} \mathrm{~s}^{-1}$ is the speed of the fluid flow at a point on the streamline;
$g$ is the acceleration due to gravity;
$h$ metres is the height of the point above a fixed plane of reference;
$P \mathrm{~N} \mathrm{~m}^{-2}$ is the pressure at the chosen point;
and
$C \mathrm{~N} \mathrm{~m}^{-2}$ is a constant.
By using dimensional analysis, show that the equation is dimensionally consistent.

| aUEATTRN <br> ReFRRENCE | Answer space for question 1 |
| :--- | :--- |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |


| QUESTION PART REFERENCE | Answer space for question 1 |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

2 A projectile is fired from a point $O$ with an initial velocity of $70 \mathrm{~m} \mathrm{~s}^{-1}$ at an angle $\theta$ above the horizontal. The projectile travels in a vertical plane through the point $O$. During the motion, the horizontal and upward vertical displacements of the projectile from $O$ are $x$ metres and $y$ metres respectively.
(a) Show that, during the flight, the equation of the trajectory of the projectile is given by

$$
y=x \tan \theta-\frac{x^{2}\left(1+\tan ^{2} \theta\right)}{1000}
$$

(b) (i) The projectile hits a small target which is 500 metres horizontally from $O$ and 25 metres vertically below $O$.
Find the two possible values of $\theta$.
(ii) Find the shortest possible time of the flight of the projectile from $O$ to the target.

| QUESTTON <br> ReFERENEE | Answer space for question 2 |
| :--- | :--- |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |



3 A particle of mass 2 kg is moving in a straight line on a horizontal surface under the action of a single variable force. At time $t$ seconds the force has magnitude ( $10-2 t$ ) newtons.
(a) Find the magnitude of the impulse given to the particle by the force between the times $t=0$ and $t=4$.
(b) When $t=0$ the particle has velocity $3 \mathrm{~m} \mathrm{~s}^{-1}$.

Find the velocity of the particle when $t=4$.
(c) Find the times when the particle has velocity $11 \mathrm{~ms}^{-1}$.

| $\substack{\text { QUESTTON } \\ \text { REFERENEE }}$ | Answer space for question 3 |
| :--- | :--- |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |


| QUESTION PART REFERENCE | Answer space for question 3 |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

4 Two smooth and uniform spheres, $A$ and $B$, of equal radii have masses $3 m$ and $2 m$ respectively. The sphere $A$ is moving with speed $u$ on a smooth horizontal surface and collides with the sphere $B$, which is stationary on the same surface. Just before the collision, the direction of motion of $A$ makes an angle of $30^{\circ}$ with the line of centres of the spheres. Immediately after the collision, the direction of motion of $A$ makes an angle $\alpha$ with the line of centres of the spheres, as shown in the diagram.


The coefficient of restitution between $A$ and $B$ is $\frac{2}{3}$.
(a) Find the value of $\alpha$.
(b) Find, in terms of $m$ and $u$, the magnitude of the impulse exerted by $A$ on $B$.
[2 marks]

| $\substack{\text { QUESTION } \\ \text { REFERENCE }}$ | Answer space for question 4 |
| :--- | :--- | :--- |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |


|  | Answer space for question 4 |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

$5 \quad$ A projectile is fired from a point $O$ on a plane which is inclined at an angle $\alpha$ to the horizontal, where $\tan \alpha=\frac{2}{3}$. The projectile is fired up the plane with velocity $u$ at an angle $\theta$ above the plane. The motion of the projectile is in a vertical plane containing a line of greatest slope of the inclined plane. The projectile strikes the plane for the first time at right angles to the plane at a point $A$.

(a) Show that $\tan \theta=\frac{3}{4}$.
(b) Given that $O A=20 \mathrm{~m}$, show that the time taken by the projectile to travel from $O$ to $A$ is 2.71 seconds, correct to three significant figures.
(c) Find the value of $u$.

| OUEETTON <br> REFERRNCE | Answer space for question 5 |
| :--- | :--- |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |



| QUESTION PART REFERENCE | Answer space for question 5 |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |


| QUESTION PART REFERENCE | Answer space for question 5 |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

6 Two smooth uniform spheres, $A$ and $B$, of equal radii have masses $m$ and $2 m$ respectively. The spheres are moving in a straight line and in the same direction on a smooth horizontal surface with constant speeds $5 u$ and $2 u$ respectively.


The sphere $A$ collides directly with the sphere $B$. After the collision, $A$ and $B$ move in the same direction.
The coefficient of restitution between $A$ and $B$ is $\frac{2}{3}$.
(a) Show that, in terms of $u$, the speeds of $A$ and $B$ immediately after the collision are $\frac{5 u}{3}$ and $\frac{11 u}{3}$ respectively.
(b) At a moment after the collision, $B$ is moving in a straight line directly towards a point $O$ and is at a distance $s$ from $O$. At this moment, a sphere $C$ is moving on the same surface in a straight line perpendicular to the direction of motion of $B$ and passes through $O$ with constant speed $\frac{11 u}{4}$.
Model the spheres as particles.
Find, in terms of $s$, the shortest distance between $B$ and $C$ in the subsequent motion.
[5 marks]

| QUESTION <br> REFERT <br> RFENE | Answer space for question 6 |
| :--- | :--- |
|  |  |
|  |  |
|  |  |
|  |  |


$7 \quad$ Two ships, $A$ and $B$, are sailing with constant velocities. At noon, $A$ and $B$ are 48 km apart, with $B$ on a bearing of $045^{\circ}$ from $A$. Two hours later, $B$ is 20 km due north of $A$.
(a) Find the velocity of $B$ relative to $A$, giving your answer as a speed together with a bearing.
(b) It is given that $A$ is sailing with a speed of $12 \mathrm{~km} \mathrm{~h}^{-1}$ and $B$ is sailing on a bearing of $210^{\circ}$.
(i) Find the bearings of the two possible directions in which $A$ could be sailing. Give your answers correct to the nearest degree.
(ii) Hence find the greater of the two possible speeds of $B$.

| $\substack{\text { QUESTION } \\ \text { REFERT } \\ \text { Anse }}$ | Anser space for question 7 |
| :--- | :--- |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |



| QUESTION PART REFERENCE | Answer space for question 7 |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |


| QuESTITN <br> RFFRRENCE | Answer space for question 7 |
| :--- | :--- |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

END OF QUESTIONS


## Copyright Information

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third party copyright material will be published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2017 AQA and its licensors. All rights reserved.

