Version 1.0



General Certificate of Education (A-level) June 2011

**Mathematics** 

MFP4

(Specification 6360)

**Further Pure 4** 

# Final



Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2011 AQA and its licensors. All rights reserved.

#### Copyright

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

### Key to mark scheme abbreviations

| М                   | mark is for method                                                 |
|---------------------|--------------------------------------------------------------------|
| m or dM             | mark is dependent on one or more M marks and is for method         |
| А                   | mark is dependent on M or m marks and is for accuracy              |
| В                   | mark is independent of M or m marks and is for method and accuracy |
| E                   | mark is for explanation                                            |
| $\sqrt{or}$ ft or F | follow through from previous incorrect result                      |
| CAO                 | correct answer only                                                |
| CSO                 | correct solution only                                              |
| AWFW                | anything which falls within                                        |
| AWRT                | anything which rounds to                                           |
| ACF                 | any correct form                                                   |
| AG                  | answer given                                                       |
| SC                  | special case                                                       |
| OE                  | or equivalent                                                      |
| A2,1                | 2 or 1 (or 0) accuracy marks                                       |
| –x EE               | deduct <i>x</i> marks for each error                               |
| NMS                 | no method shown                                                    |
| PI                  | possibly implied                                                   |
| SCA                 | substantially correct approach                                     |
| с                   | candidate                                                          |
| sf                  | significant figure(s)                                              |
| dp                  | decimal place(s)                                                   |

# No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

# Otherwise we require evidence of a correct method for any marks to be awarded.

| Q            | Solution                                                                                                                                                                                                                                | Marks      | Total | Comments                           |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------|------------------------------------|
| 1(a)         | $\det \mathbf{A} = 5p - 1$                                                                                                                                                                                                              | B1         |       |                                    |
|              | $\det \mathbf{B} = p^2 - 10p - 11$                                                                                                                                                                                                      | M1A1       | 3     | M1A0 if num error(s) made          |
| (b)          | Use of $det(\mathbf{AB}) = det \mathbf{A} det \mathbf{B}$                                                                                                                                                                               | <b>B</b> 1 |       | PI                                 |
| (0)          | Finding three values of $p$                                                                                                                                                                                                             | M1         |       | Allow correct factors here         |
|              | $p = \frac{1}{2}, 11, -1$                                                                                                                                                                                                               | A1F        | 3     | ft numerical errors in (a)         |
|              | Total                                                                                                                                                                                                                                   |            | 6     |                                    |
|              | $\begin{bmatrix} \cos 2\alpha & \sin 2\alpha \end{bmatrix} \begin{bmatrix} \cos \beta & -\sin \beta \end{bmatrix}$                                                                                                                      |            | •     |                                    |
| 2            | $\sin 2\alpha = \cos 2\alpha$ & $\sin \beta = \cos \beta$                                                                                                                                                                               | B1         |       | used or written down               |
|              | $\begin{bmatrix} \sin 2\alpha & \cos 2\alpha \end{bmatrix} \begin{bmatrix} \sin p & \cos p \end{bmatrix}$                                                                                                                               |            |       |                                    |
|              | Mult'n of these in the correct order                                                                                                                                                                                                    | B1         |       | at least two entries correct       |
|              |                                                                                                                                                                                                                                         |            |       |                                    |
|              | Use of addition formulae                                                                                                                                                                                                                | <b>M</b> 1 |       | At least once                      |
|              |                                                                                                                                                                                                                                         |            |       |                                    |
|              | $\left[\cos(2\alpha+\beta)  \sin(2\alpha+\beta)\right]$                                                                                                                                                                                 |            |       | ft only for use of clockwise rot'n |
|              | $\sin(2\alpha + \beta) - \cos(2\alpha + \beta)$                                                                                                                                                                                         | A1F        |       | and/or mult'n in wrong order       |
|              | Reflection                                                                                                                                                                                                                              | A1F        |       | ft as above                        |
|              | in $y = x \tan\left(\alpha + \frac{1}{2}\beta\right)$                                                                                                                                                                                   | A1F        | 6     | ft as above                        |
|              | Total                                                                                                                                                                                                                                   |            | 6     |                                    |
| <b>3</b> (a) | Vector product attempted                                                                                                                                                                                                                | M1         |       |                                    |
|              | $\mathbf{p} \times \mathbf{q} = \begin{bmatrix} 1\\4\\7 \end{bmatrix} \times \begin{bmatrix} 7\\-2\\4 \end{bmatrix} = \begin{bmatrix} 30\\45\\-30 \end{bmatrix}$ $\dots = 15\begin{bmatrix} 2\\3\\-2 \end{bmatrix}, \text{ so } t = -2$ | A1<br>A1   | 3     |                                    |
| (b)          | Scalar triple product attempted                                                                                                                                                                                                         | M1         |       | OE, eg determinant                 |
|              | $\mathbf{p} \times \mathbf{q} \bullet \mathbf{r} = 15 \begin{bmatrix} 2\\3\\-2 \end{bmatrix} \bullet \begin{bmatrix} 2\\3\\t \end{bmatrix} = 15(13 - 2t)$ $\mathbf{m} = 0, \text{ so } t = 6^{\frac{1}{2}}$                             | A1<br>A1   | 3     |                                    |
|              |                                                                                                                                                                                                                                         |            | -     |                                    |
|              | <b>ALT:</b> $5p + q = 6r$                                                                                                                                                                                                               | B2.0       |       | or any correct linear relationship |
|              | $\dots \Rightarrow t = 6\frac{1}{2}$                                                                                                                                                                                                    | B1         |       | P                                  |
|              | Total                                                                                                                                                                                                                                   |            | 6     |                                    |

| Q    | Solution                                                                                                                       | Marks      | Total | Comments                                                                                            |
|------|--------------------------------------------------------------------------------------------------------------------------------|------------|-------|-----------------------------------------------------------------------------------------------------|
| 4(a) | $\begin{vmatrix} 2 & 1 & 3 \\ 5 & -2 & a+1 \\ a & 2 & 4 \end{vmatrix} = a^2 + 3a - 10$                                         | M1<br>A1   |       | Attempt at det of coeff matrix<br>Correct (accept unsimplified)                                     |
|      | Equating to 0 and solving quadratic in $a = 2, -5$                                                                             | m1<br>A1   | 4     | <b>SC: B1</b> for verifying $a = 2$<br><b>B1</b> for verifying $a = -5$                             |
| (b)  | 2x + y + 3z = 35x - 2y + 3z = 32x + 2y + 4z = b                                                                                | B1         |       |                                                                                                     |
|      | Eliminations leading to two equations in two variables                                                                         | M1         |       |                                                                                                     |
|      | Further elimination leading to value of $b$                                                                                    | m1         |       |                                                                                                     |
|      | <i>b</i> = 4                                                                                                                   | A1         | 4     |                                                                                                     |
|      | <b>ALT</b> : Finding two variables in terms of third                                                                           | M1         |       | eg $y = x$ and $z = 1 - x$                                                                          |
|      | Substituting into third equation                                                                                               | m1         |       |                                                                                                     |
|      | b = 4                                                                                                                          | A1         |       |                                                                                                     |
|      |                                                                                                                                |            | 8     |                                                                                                     |
| 5(a) | (i) Characteristic eqn $\lambda^2 - 9\lambda + 14 = 0$<br>$\lambda = 2, 7$                                                     | M1A1<br>A1 |       | M1A0 if num error(s) made                                                                           |
|      | Substituting back for at least one eval                                                                                        | m1         |       | for $\lambda = 2$ , $-x + 3y = 0$ or<br>for $\lambda = 7$ , $-2x + y = 0$                           |
|      | evecs $\begin{bmatrix} 3\\1 \end{bmatrix}$ and $\begin{bmatrix} 1\\2 \end{bmatrix}$                                            | A1A1       | 6     | or non-zero multiples                                                                               |
|      | (ii) $\mathbf{U} = \begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix}$ , $\mathbf{D} = \begin{bmatrix} 2 & 0 \\ 0 & 7 \end{bmatrix}$ | B1FB1F     |       | Columns of <b>U</b> and <b>D</b> are<br>interchangeable, but must match;<br>ft wrong answers in (i) |
|      | $\mathbf{U}^{-1} = \frac{1}{5} \begin{bmatrix} 2 & -1 \\ -1 & 3 \end{bmatrix}$                                                 | B1F<br>B1F | 4     | 1/det U<br>adjoint matrix;<br>ft incorrect U (provided det $\neq 0$ )                               |
| (b)  | (i) evals of $\mathbf{M}^3$ are $\lambda^3$ , $\mu^3$                                                                          | B1         |       |                                                                                                     |
|      | since $\mathbf{M}^3 = \mathbf{U} \mathbf{D}^3 \mathbf{U}^{-1}$                                                                 | E1         | 2     |                                                                                                     |
|      | (ii) evecs of $\mathbf{M}^3$ are $\mathbf{v}_1$ and $\mathbf{v}_2$                                                             | B1         | 1     |                                                                                                     |

| Q           | Solution                                                                                                                                                                                                                                                                                           | Marks                | Total | Comments                                                                                                                 |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------|--------------------------------------------------------------------------------------------------------------------------|
| 6<br>(a)(i) | $\mathbf{r} = \begin{bmatrix} 1\\2\\3 \end{bmatrix} + \lambda \begin{bmatrix} 2\\3\\6 \end{bmatrix}$                                                                                                                                                                                               | B2,1                 | 2     | Any correct vector line equation;<br>B1 if one vector correct, or if both<br>correct but equation not in correct<br>form |
|             | (ii) $\mathbf{r} = \begin{bmatrix} 1 & 4 & -3 \\ 2 & -1 & 0 \\ 1 & 1 & -1 \end{bmatrix} \begin{bmatrix} 1+2\lambda \\ 2+3\lambda \\ 3+6\lambda \end{bmatrix} = \begin{bmatrix} -4\lambda \\ \lambda \\ -\lambda \end{bmatrix}$<br>Clear and valid explanation that this is a line through <i>O</i> | M1<br>A1<br>A1<br>E1 | 4     | Attempt at multiplication<br>At least one entry correct<br>All three correct                                             |
| (b)<br>(i)  | $\begin{bmatrix} 1 & 4 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} p \\ \frac{1}{2}p+k \end{bmatrix} = \begin{bmatrix} 3p+4k \\ \frac{3}{2}p-k \end{bmatrix}$<br>Answer satisfies $y = \frac{1}{2}x - 3k$                                                                                              | B1<br>M1A1<br>A1     | 4     | For LHS<br>For RHS                                                                                                       |
|             | (ii) Equal gradients, hence parallel<br>Distance = $ k - c  \cos \theta$ with $\tan \theta = \frac{1}{2}$                                                                                                                                                                                          | E1F<br>M1            |       | ft if previous answer is of the<br>form $y = \frac{1}{2}x + c$<br>Allow incorrect value of <i>c</i> here                 |
|             | $\dots = \frac{\delta \kappa}{\sqrt{5}}$                                                                                                                                                                                                                                                           | A1                   | 3     | Allow 3.58k                                                                                                              |
|             |                                                                                                                                                                                                                                                                                                    |                      | 13    |                                                                                                                          |
| 7<br>(a)(i) | Appropriate row/column operation<br>$\Delta = \begin{vmatrix} n^2 + n + 1 & 0 & 0 \\ 0 & 1 & n \end{vmatrix}$                                                                                                                                                                                      | M1                   |       | eg $R_1' = R_1 + R_3$ , $R_3' = R_3 + R_1$<br>or $C_3' = C_3 - nC_2$                                                     |
|             | $\begin{vmatrix} 1 & -(n+1) & 1 \\  1 & 0 & 0 \end{vmatrix}$                                                                                                                                                                                                                                       |                      |       |                                                                                                                          |
|             | = $(n^2 + n + 1) \begin{vmatrix} 0 & 1 & n \\ 1 & -(n+1) & 1 \end{vmatrix}$                                                                                                                                                                                                                        | A1                   | 2     | Factor correctly extracted                                                                                               |
| (ii)        | Expanding remaining determinant                                                                                                                                                                                                                                                                    | M1                   |       | OE                                                                                                                       |
|             | $\Delta = (n^2 + n + 1)^2$                                                                                                                                                                                                                                                                         | A1                   | 2     |                                                                                                                          |
| (b)         | $\Delta = (n^2 + n)^2 + 2n^2 + 2n + 1$<br>= $(n^2 + n)^2 + (n + 1)^2 + n^2$                                                                                                                                                                                                                        | B1<br>B1             | 2     | Accept unsimplified                                                                                                      |
| (c)         | Setting $n = 10$                                                                                                                                                                                                                                                                                   | M1                   |       |                                                                                                                          |
|             | $111^2 = 12321 = 110^2 + 11^2 + 10^2$                                                                                                                                                                                                                                                              | A1                   | 2     |                                                                                                                          |
|             |                                                                                                                                                                                                                                                                                                    |                      | 8     |                                                                                                                          |

| Q      | Solution                                                                                                                                       | Marks     | Total | Comments                                                                                   |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------|--------------------------------------------------------------------------------------------|
| 8(a)   | Use of sin or $\cos\theta = \frac{\text{scalar product}}{\text{product of moduli}}$                                                            | M1        |       | using $\begin{bmatrix} 3\\-2\\6 \end{bmatrix}$ and $\begin{bmatrix} 2\\1\\2 \end{bmatrix}$ |
|        | Numerator = $16$ , denominator = $21$                                                                                                          | B1B1      |       | Allow numerator $\sqrt{185}$                                                               |
|        | $\sin\theta = \frac{16}{21} \implies \theta \approx 49.6^{\circ}$                                                                              | A1        | 4     | Allow AWRT 49.6                                                                            |
| (b)    | $\begin{bmatrix} 2\lambda + 1 \\ \lambda + 2 \\ 2\lambda - 7 \end{bmatrix} \bullet \begin{bmatrix} 3 \\ -2 \\ 6 \end{bmatrix} = 37$            | M1        |       |                                                                                            |
|        | $6\lambda + 3 - 2\lambda - 4 + 12\lambda - 42 = 37$                                                                                            | m1        |       | with attempt to solve                                                                      |
|        | $\dots \Longrightarrow \lambda = 5$                                                                                                            | Al<br>D1E | Λ     | C 1 C 2                                                                                    |
|        | giving $P = (11, 7, 3)$                                                                                                                        | BIF       | 4     | It wrong value of $\lambda$                                                                |
| (c)(i) | Use of the vectors $\begin{bmatrix} 3 \\ -2 \\ 6 \end{bmatrix}$ and $\begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}$                                | M1        |       |                                                                                            |
|        | Vector product attempted                                                                                                                       | m1        |       | OE                                                                                         |
|        | [-10]                                                                                                                                          |           |       |                                                                                            |
|        | Required vector is 6<br>7                                                                                                                      | A1        | 3     | Or a non-zero multiple                                                                     |
| (ii)   | $\mathbf{a} = \begin{bmatrix} 11\\7\\3 \end{bmatrix}$                                                                                          | B1F       |       | ft wrong answer in (b)                                                                     |
|        | $\mathbf{b} = \begin{bmatrix} -10\\6\\7 \end{bmatrix} \times \begin{bmatrix} 3\\-2\\6 \end{bmatrix} = \begin{bmatrix} 50\\81\\2 \end{bmatrix}$ | M1A1F     |       | Or a non-zero multiple; ft wrong answer to (c)(i)                                          |
|        | Fully correct equation for <i>L</i> '                                                                                                          | Al        | 4     |                                                                                            |
|        |                                                                                                                                                |           | 15    |                                                                                            |
|        | TOTAL                                                                                                                                          |           | 75    |                                                                                            |