Version

General Certificate of Education (A-level) January 2013

Mathematics

MFP4

(Specification 6360)

Further Pure 4

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2013 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

Key to mark scheme abbreviations

М	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\sqrt{or} ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1	$\mathbf{n}_{1} = \begin{bmatrix} 1\\2\\2 \end{bmatrix} \qquad \mathbf{n}_{2} = \begin{bmatrix} p\\3\\0 \end{bmatrix}$ $\mathbf{n}_{1} \cdot \mathbf{n}_{2} = p+6$ $ \mathbf{n}_{1} = \sqrt{1^{2} + 2^{2} + 2^{2}} = 3$ $ \mathbf{n}_{2} = \sqrt{p^{2} + 9}$	B1		$\mathbf{n}_1 \cdot \mathbf{n}_2$ correct
	Using $\mathbf{a} \cdot \mathbf{b} = \mathbf{a} \mathbf{b} \cos \theta$: 'their' $p + 6 = (3) (\sqrt{p^2 + 9}) (\frac{2}{3})$ $\Rightarrow (p + 6)^2 = 4p^2 + 36$	M1A1		forming an equation using scalar product
	$p^{2} + 12p + 36 = 4p^{2} + 36$ 0 = 3p(p-4)	m1		correctly forming and attempting to solve their quadratic equation
	$p \neq 0 \Longrightarrow p = 4$	A1	5	p = 4 stated clearly (must reject $p=0$)
	Total		5	
2(a)	$\det \mathbf{A}^{-1} = -3 \Longrightarrow \det \mathbf{A} = -\frac{1}{3}$	B1	1	
(b)	$\det(\mathbf{AB}) = 24 \Longrightarrow \det \mathbf{B} = \frac{24}{\det \mathbf{A}} = -72$	M1 A1F		M1 for use of $det(AB) = det A \times det B$ A1F ft their detA
	Volume = $20 \times 72 = 1440 \text{cm}^3$	Alcso	3	Must be positive
	Total		4	
3 (a)	$(\mathbf{a}-4\mathbf{b})\times(\mathbf{a}+3\mathbf{b}) = \mathbf{a}\times\mathbf{a}-4\mathbf{b}\times\mathbf{a}+3\mathbf{a}\times\mathbf{b}-12\mathbf{b}\times\mathbf{b}$	M1		Three terms correct
	$= -4\mathbf{b} \times \mathbf{a} + 3\mathbf{a} \times \mathbf{b}$	A1		$\mathbf{b} \times \mathbf{b} = \mathbf{a} \times \mathbf{a} = 0$ — correct use
	$= 7\mathbf{a} \times \mathbf{b}$	Alcso	3	$7 \mathbf{a} \times \mathbf{b}$ or $-7 \mathbf{b} \times \mathbf{a}$
(b)	$\mathbf{a} \perp \mathbf{b} \Rightarrow \sin \theta = 1$ $\Rightarrow \mathbf{a} \times \mathbf{b} = \mathbf{a} \mathbf{b} $ $\Rightarrow (\mathbf{a} - 4\mathbf{b}) \times (\mathbf{a} + 3\mathbf{b}) = 7 \mathbf{a} \mathbf{b} $	M1		Use of sin $\theta = 1$ to simplify
	$\lambda = 7$	A1F	2	Should match 'their' 7
	Total		5	

Q	Solution	Marks	Total	Comments
4(a)	$\begin{bmatrix} 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -1 \end{bmatrix}$			
	$\mathbf{A}^2 = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 2 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 2 & 2 \end{bmatrix}$			
	$= 5 6 4 \qquad p = -1$	B1		<i>p</i> -value
	$\begin{bmatrix} 10 & 10 & 9 \end{bmatrix} \qquad q = 10$	B1	2	<i>q</i> -value
(h)	$A^{3} = 6A^{2} + 11A = 6I = 0$ multiply by A^{-1}	M1		Multiplication by \mathbf{A}^{-1}
	$(A^3 - 6A^2 + 11A - 6I)A^{-1} = (0)A^{-1}$	1011		Multiplication by A
	$A^{3}A^{-1} - 6A^{2}A^{-1} + 11AA^{-1} - 6IA^{-1} = 0$			
	$A^2 - 6A + 11I - 6A^{-1} = 0$			
	$\mathbf{6A}^{-1} = \mathbf{A}^2 - \mathbf{6A} + 11\mathbf{I}$			
	$A^{-1} = \frac{1}{2} (A^2 - 6A + 11I)$	A1	2	AG
	6		_	
(c)	$\begin{bmatrix} 4 - 2 & 2 \end{bmatrix}$			
	$\mathbf{A}^{-1} = \frac{1}{6} \begin{vmatrix} -1 & 5 & -2 \end{vmatrix}$ $r = 4$	B1		<i>r</i> -value
	$\begin{bmatrix} -2 & -2 & 2 \end{bmatrix} \qquad \qquad s = -2$	B1	2	<i>s</i> -value
(d)	$\begin{bmatrix} x \end{bmatrix} \begin{bmatrix} 4 - 2 & 2 \end{bmatrix} \begin{bmatrix} k \end{bmatrix}$			
	$y = \frac{1}{6} -1 5 -2 5$			
	$\begin{bmatrix} z \end{bmatrix} \begin{bmatrix} 0 \\ -2 & -2 \end{bmatrix} \begin{bmatrix} 7 \end{bmatrix}$			
	$\begin{bmatrix} 4k - 10 + 14 \end{bmatrix} \begin{bmatrix} 4k + 4 \end{bmatrix}$			
	$=\frac{1}{-k} \begin{vmatrix} -k & 10 & 14 \\ -k & 25 & -14 \end{vmatrix} = \frac{1}{-k} \begin{vmatrix} 11 & -k \end{vmatrix}$	24		
	$6 \lfloor -2k - 10 + 14 \rfloor 6 \lfloor 4 - 2k \rfloor$	MI		use of $\mathbf{A}^{-1}\mathbf{v}$ – one row correct
		Λ 1		correct solution for one veriable
	$x = \frac{2\kappa + 2}{3}, y = \frac{11 - \kappa}{6}, z = \frac{2 - \kappa}{3}$	A1 A1	3	all correct CAO
	Total		9	
(d)	alternative If solving equations by elimination, M1			
	A1 for correct solution for one variable,			
	A1 all correct			

Q	Solution	Marks	Total	Comments
5(a)	$\begin{vmatrix} -2 & 1 & 2k \end{vmatrix}$			
	$\begin{vmatrix} -1 & 1 & k+1 \end{vmatrix} =$			
	$\begin{vmatrix} 2 & k-1 & 1 \end{vmatrix}$			
	$= -2 \begin{vmatrix} 1 & k+1 \\ -2 & -2 \end{vmatrix} + 1 \begin{vmatrix} 1 & 2k \\ -2 & -2 \end{vmatrix} + 2 \begin{vmatrix} 1 & 2k \\ -2 & -2 \end{vmatrix}$	M1		correctly expanding by any row or column
	$\begin{vmatrix} k-1 & 1 \end{vmatrix} \begin{vmatrix} k-1 & 1 \end{vmatrix} \begin{vmatrix} 1 & k+1 \end{vmatrix}$			
	= -2[1-(k+1)(k-1)]+[1-2k(k-1)]+2[k+1-2k]	A1		correct unsimplified expansion of 2×2 determinants
	$= -2[1-k^{2}+1]+[1-2k^{2}+2k]+2[1-k]$			
	$=-4+2k^{2}+1-2k^{2}+2k+2-2k$			
	= -1	Alcso		-1 obtained
	<i>either</i> all <i>k</i> 's cancel <i>or</i> independent of <i>k etc</i>	E1	4	comment required (must score previous 3 marks
(b)	Identifying that $k = 2$	B1		k = 2
	Value of determinant $\neq 0$ (or = -1 etc)			
	therefore vectors are linearly independent	E1F	2	ft answer (a) if $0 \Rightarrow \lim dep$
(c)(i)	Identifying that $k = 3$	B1		<i>k</i> = 3
	therefore equations are consistent	E1F	2	ft answer (a) if $0 \Rightarrow$ inconsistent
	\mathbf{T}			
(ii)	3 planes intersect in a unique point	B1	1	
(1)	- F		_	
	Total		9	
	Alternative for (a):			
	$\begin{vmatrix} -2 & 1 & 2k \end{vmatrix}$ $(2k)$			
	$\begin{vmatrix} -1 & 1 & k+1 \end{vmatrix} \xrightarrow{r_1 \rightarrow r_1 - 2r_2} r \rightarrow r + 2r$			
	$\begin{vmatrix} 2 & k-1 & 1 \end{vmatrix} = r_3 - r_3 + 2r_2$			
	0 -1 -2			
	$= \begin{vmatrix} -1 & 1 & k+1 \end{vmatrix} r_3 \rightarrow r_3 + (k+1)r_1$			
	$\begin{vmatrix} 0 & k+1 & 2k+3 \end{vmatrix}$	(M1)		column after row operations
	$\begin{vmatrix} 0 & -1 & -2 \\ -1 & 1 & k+1 \end{vmatrix} = -1$	(A1)		correct expansion unsimplified
		(A1)		-1 obtained
	<i>either</i> all k's cancel <i>or</i> independent of k <i>etc</i>	(E1)	(4)	comment required

Q	Solution	Marks	Total	Comments
6(a)(i)	Reflection	M1		Reflection stated for M1
	In (the plane) $z=0$ (or in the x-y plane)	A1	2	Either version for A1
(ii)	Rotation	M1		Rotation stated
(11)	About the v-axis	A1		v-axis
	through $\frac{\pi}{2}$ radians	B1	3	(or 60°)
	3			
(b)	$\begin{bmatrix} \frac{1}{2} & 0 & \frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{2} & 0 & -\frac{\sqrt{3}}{2} \end{bmatrix}$			M1 correct order of matrices
	$\begin{bmatrix} T_{2} & T_{1} \\ T_{2} & T_{2} \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 2 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 2 \\ 0 & 1 & 0 \end{bmatrix}$	M1A1	2	A1 fully correct
	$\begin{bmatrix} 2 & 1 \\ -\sqrt{3} & 0 & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} -\sqrt{3} & 0 & -\frac{1}{2} \end{bmatrix}$			$\frac{1}{2}$ 0 $\frac{\sqrt{3}}{2}$
				[N.B 0 1 0 scores M0A0]
				$\frac{\sqrt{3}}{\sqrt{3}} = 0 - \frac{1}{\sqrt{3}}$
(c)(i)	For line of invariants points			
	$\begin{bmatrix} k & 2 & -1 \end{bmatrix} \begin{bmatrix} x \end{bmatrix} \begin{bmatrix} x \end{bmatrix}$			$\begin{bmatrix} x \end{bmatrix} \begin{bmatrix} x \end{bmatrix}$
	$\begin{vmatrix} 1 & 1 & 1 \end{vmatrix} \begin{vmatrix} y \end{vmatrix} = \begin{vmatrix} y \end{vmatrix}$	M1		Set up equations – uses $\mathbf{M} \mid y \mid = \mid y \mid$
	$\begin{bmatrix} 3 & 4 & 1 \end{bmatrix} \begin{bmatrix} z \end{bmatrix} \begin{bmatrix} z \end{bmatrix}$			
	$\Rightarrow kx + 2y - z = x \Rightarrow (k - 1)x + 2y - z = 0 \textcircled{1}$			
	$x + y + z = y \implies x + z = 0 $	A1		Two equations correct
	$3x + 4y + z = z \implies 3x + 4y = 0 (3)$	A1		All three equations correct
	From (2) $z = -x$	M1		Defines variables in terms of one letter
	From (3) $y = \frac{-3x}{2}$			[4]
	4			or 2 components in $\begin{vmatrix} -3 \end{vmatrix}$ correct
	Substitute in (1) $(k-1)x - \frac{3}{2}x + x = 0$	A1		Substitution into other equations
	$x \left k - 1 - \frac{3}{2} + 1 \right = 0$			
				$or \begin{vmatrix} -3 \end{vmatrix}$ correct
	$x\left[k-\frac{3}{2}\right] = 0$			
		A 1		L makes abtain - J
	$x \neq 0 \implies \kappa = \frac{1}{2}$	AI		k-value obtained.
	4			
(ii)	Line $x = \frac{-4}{3}y = -z$			
	$\frac{x}{z} = \frac{y}{z} = \frac{z}{z}$	B1cao	7	Or equivalent
	4 -3 -4	21040		
	Total		14	

Q	Solution	Marks	Total	Comments
	Alternative to 6(c):			
	$\begin{bmatrix} k-1 & 2 & -1 & 0 \\ 1 & 0 & 1 & 0 \\ 3 & 4 & 0 & 0 \end{bmatrix}$	(M1)		Substitute and set up
	$r_1 \rightarrow r_1 + r_2$	(A1)		Row operation
	$\begin{bmatrix} k & 2 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 3 & 4 & 0 & 0 \end{bmatrix}$			
	$r_1 \rightarrow r_1 - \frac{1}{2} r_3$	(A1)		Row operation
	$\begin{bmatrix} k - \frac{3}{2} & 2 & 0 & 0\\ 1 & 0 & 1 & 0\\ 3 & 4 & 0 & 0 \end{bmatrix} \Rightarrow k = \frac{3}{2}$	(A1)		k-value obtained
	$v = \lambda \begin{pmatrix} 4 \\ -3 \\ -4 \end{pmatrix}$	(M1A1)		M1 obtains v in terms of single vector. A1 correct
	$\frac{x}{4} = \frac{y}{-3} = \frac{z}{-4}$	(B1cao)	(7)	Correct form

Q	Solution	Marks	Total	Comments
7(a)	$\begin{bmatrix} -a & 0 & a \\ 0 & 6 & 0 \\ a & 0 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 6 \\ 0 \end{bmatrix}$	M1		
	$\Rightarrow \lambda_1 = 6$	A1	2	
(b)	$\begin{bmatrix} -a & 0 & a \\ 0 & 6 & 0 \\ a & 0 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} = \begin{bmatrix} a \\ 0 \\ a+4 \end{bmatrix}$	M1		
(c)	$\begin{bmatrix} a \\ 0 \\ a+4 \end{bmatrix} = \begin{bmatrix} \lambda_2 \\ 0 \\ 2\lambda_2 \end{bmatrix}$ i component $\Rightarrow a = \lambda_2 \otimes$ k component $\Rightarrow a + 4 = 2\lambda_2$ using \otimes , $a + 4 = 2a$ 4 = a Let $\mathbf{v_3} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$	ml Al	3	Eliminating λ_2 Value of <i>a</i> obtained
	$\begin{bmatrix} -4 & 0 & 4 \\ 0 & 6 & 0 \\ 4 & 0 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ x \end{bmatrix} = -6 \begin{bmatrix} x \\ y \\ z \end{bmatrix}$	M1		Substitute 'their value of <i>a</i> ' and attempt to get a system of equations.
	$\Rightarrow -4x + 4z = -6x \Rightarrow x + 2z = 0$ $6y = -6y \Rightarrow y = 0$ $[4x + 2z = -6z \Rightarrow x + 2z = 0]$	A1F		Both equations "correct" FT their a
	$\mathbf{v}_{3} = \begin{bmatrix} -2\\0\\1 \end{bmatrix} (\text{or equivalent})$	Alcao	3	
(d)	$\mathbf{D} = \begin{bmatrix} 6 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & -6 \end{bmatrix}$	B1F		Diagonal matrix using –6 and "their 4" and "their 6"
	$\mathbf{U} = \begin{bmatrix} 0 & 1 & -2 \\ 1 & 0 & 0 \end{bmatrix}$	M1		FT their non-zero v_3 in U
		A1cao	3	U correct and corresponding to D
	Total		11	

Q	Solution	Marks	Total	Comments
	Alternative to 7(c) $\begin{bmatrix} -4 & 0 & 4 \\ 0 & 6 & 0 \\ 4 & 0 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = -6 \begin{bmatrix} x \\ y \\ z \end{bmatrix}$			
	$\Rightarrow \begin{bmatrix} 2 & 0 & 4 \\ 0 & 12 & 0 \\ 4 & 0 & 8 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$			
	$ r_{3} \rightarrow r_{3} - 2r_{1} \qquad \begin{bmatrix} 2 & 0 & 4 \\ 0 & 12 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} $	(M1)		Row operations
	$\Rightarrow y = 0 x = -2z$	(A1F)		"correct" FT their a
	$\mathbf{v}_{3} = \begin{bmatrix} -2\\0\\1 \end{bmatrix} (\text{or equivalent})$	(Alcao)		

Q	Solution	Marks	Total	Comments
8(a)(i)	$\overrightarrow{AB} = \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix} \qquad \overrightarrow{AD} = \begin{bmatrix} 4 \\ 3 \\ -1 \end{bmatrix}$	B1		either \overrightarrow{AB} or \overrightarrow{AD}
	$\begin{vmatrix} \mathbf{i} & 2 & 4 \\ \mathbf{j} & -1 & 3 \\ \mathbf{k} & 3 & -1 \end{vmatrix} = \begin{pmatrix} -8 \\ 14 \\ 10 \end{pmatrix}$	M1 A1cao	3	one component of $\overrightarrow{AB} \times \overrightarrow{AD}$ correct all correct
(ii)	Area $ABCD = \left \overrightarrow{AB} \times \overrightarrow{AD} \right $ = $\sqrt{8^2 + 14^2 + 10^2}$ = $\sqrt{64 + 196 + 100}$ = $\sqrt{360}$ = $\sqrt{26} \sqrt{10}$	M1		FT their $\left \overrightarrow{AB} \times \overrightarrow{AD} \right $
	$= \sqrt{30}\sqrt{10}$ $= 6\sqrt{10}$	Alcso	2	or $p = 6$
(b)	$\overrightarrow{AB} \times \overrightarrow{AD}$ is perpendicular to plane <i>ABCD</i> Hence direction ratios of line = -8:14:10	M1		used for \mathbf{v} in vector line equation
	= -4:7:5	A1		or any multiple of $\begin{bmatrix} -4\\7\\5 \end{bmatrix}$
	<i>M</i> is mid-point of either diagonal = $\left(\frac{1+7}{2}, \frac{0+2}{2}, \frac{2+4}{2}\right)$ = (4, 1, 3)	B1		mid-point calculation
	Hence line is $\begin{pmatrix} \mathbf{r} - \begin{bmatrix} 4 \\ 1 \\ 3 \end{bmatrix} \times \begin{bmatrix} -4 \\ 7 \\ 5 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$	Alcso	4	All correct or equivalent multiple of $ \begin{bmatrix} -4 \\ 7 \\ 5 \end{bmatrix} $

Q	Solution	Marks	Total	Comments
8(c)(i)	Perpendicular vector to $\Pi = \begin{bmatrix} -4\\7\\5 \end{bmatrix}$			
	$\Rightarrow \Pi \text{ has equation} - 4x + 7y + 5z = c$ Through (6, 5, 17)	M1		ft their perpendicular vector
	$\Rightarrow c = -4(6) + 7(5) + 5(17) = -24 + 35 + 85$	m1		using (6, 5, 17)
	= 96 Equation is $-4x + 7y + 5z = 96$	A1		ACF
	x=4-4t; y=1+7t; z=3+5t Line meets plane when	B1F		parametric form of line
	-4(4-4t) + 7(1+7t) + 5(3+5t) = 96 -16+16t + 7 + 49t + 15 + 25t = 96 90t = 90	M1		substitution of parametric form and attempt to solve for <i>t</i>
	t = 1 \Rightarrow point of intersection = (0, 8, 8)	Alcao	6	correct point of intersection
(ii)	Volume = $(\overrightarrow{AB} \times \overrightarrow{AD}) \cdot \overrightarrow{AQ}$	M1		Attempt to use formula
	$\overrightarrow{AQ} = \begin{bmatrix} 5\\5\\15 \end{bmatrix}$ $\longrightarrow \begin{bmatrix} -8\\14\\1 \end{bmatrix}, \begin{bmatrix} 5\\5\\5 \end{bmatrix} = -40 + 70 + 150$	A1F		Follow through $\overrightarrow{AB} \times \overrightarrow{AD}$ from (a)(i).
	$ \begin{bmatrix} 1 \\ 10 \end{bmatrix} \begin{bmatrix} 5 \\ 15 \end{bmatrix} $			May use \overline{BQ} etc instead of \overline{AQ}
	= 180 (cubic units)	Alcso	3	
	Alternative Vol = Area of base × perp dist	(M1)		Volume formula used
	Perp distance = $\sqrt{(0-4)^2 + (8-1)^2 + (8-3)^2}$ = $\sqrt{16+49+25}$			
	$=\sqrt{90}$	(A1F)		Perp distance calculated FT their points or the equation of their plane or $\frac{ -4 \times 1 + 7 \times 0 + 5 \times 2 - 96 }{\sqrt{(-4)^2 + 7^2 + 5^2}} = \sqrt{90}$ etc
	Volume = $6\sqrt{10} \times \sqrt{90}$ = 6×30 = 180 (cubic units)	(A1cso)	(3)	
			18	
	TOTAL		75	

Q	Solution	Marks	Total	Comments
	Alternative to 8(c)(i) $\mathbf{r} = \begin{bmatrix} 6\\5\\17 \end{bmatrix} + s \begin{bmatrix} 2\\-1\\3 \end{bmatrix} + t \begin{bmatrix} 4\\3\\-1 \end{bmatrix}$	(M1)		$\mathbf{r} = \mathbf{a} + s\mathbf{d}_1 + t\mathbf{d}_2$ fully correct
	$\begin{vmatrix} i & 2+2s+4t & -4 \\ j & 4-s+3t & 7 \\ k & 14+3s-t & 5 \end{vmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$	(m1) (B1F)		Substitute in $(\mathbf{r} - \mathbf{a}) \times \mathbf{b} = 0$ Use of $\mathbf{r} - \mathbf{a}$ in parametric form- simplified
	-26s + 22t = 78 22s + 16t = -66 10s + 40t = -30	(A1)		Three correct equations obtained from vector product-terms collected
	s = -3, t = 0	(M1)		Correctly solving equations to get both parameters
	$\begin{bmatrix} 0\\8\\8 \end{bmatrix}$	(A1)		Correct point of intersection
	Alternative 2 to 8(c)(i) $\mathbf{r} = \begin{bmatrix} 6\\5\\17 \end{bmatrix} + s \begin{bmatrix} 2\\-1\\3 \end{bmatrix} + t \begin{bmatrix} 4\\3\\-1 \end{bmatrix}$	(M1)		$\mathbf{r} = \mathbf{a} + s\mathbf{d}_1 + t\mathbf{d}_2$ fully correct
	$\mathbf{r} = \begin{pmatrix} 4 - 4p \\ 1 + 7p \\ 3 + 5p \end{pmatrix}$	(B1F)		Parametric form of line
	2s + 4t + 4p = -2 -s + 3t - 7p = -4 3s - t - 5p = -14	(m1)		Equating components, simplifying and attempting to solve-must at least reduce to 2 equations in two unknowns
	p = 2 t = 0 and s = -3	(M1) (A1)		Solving equations-one parameter correct All values correct
	$\begin{bmatrix} 0\\8\\8\end{bmatrix}$	(A1)		Correct point of intersection