General Certificate of Education (A-level) January 2013

Mathematics

MFP4

(Specification 6360)

Further Pure 4

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2013 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
Jor ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
$-x$ EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied SCA
substantially correct approach	
cf	candidate
dp	significant figure(s)
decimal place(s)	

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline 1 \& \begin{tabular}{l}
\[
\begin{aligned}
\& \mathbf{n}_{1}=\left[\begin{array}{l}
1 \\
2 \\
2
\end{array}\right] \quad \mathbf{n}_{2}=\left[\begin{array}{l}
p \\
3 \\
0
\end{array}\right] \\
\& \mathbf{n}_{1} \cdot \mathbf{n}_{2}=p+6 \\
\& \left|\mathbf{n}_{1}\right|=\sqrt{1^{2}+2^{2}+2^{2}}=3 \\
\& \left|\mathbf{n}_{2}\right|=\sqrt{p^{2}+9}
\end{aligned}
\] \\
Using \(\mathbf{a} \cdot \mathbf{b}=|\mathbf{a}||\mathbf{b}| \cos \theta\) : \\
'their' \(p+6=(3)\left(\sqrt{p^{2}+9}\right)\left(\frac{2}{3}\right)\)
\[
\begin{array}{r}
\Rightarrow(p+6)^{2}=4 p^{2}+36 \\
p^{2}+12 p+36=4 p^{2}+36 \\
0=3 p(p-4)
\end{array}
\]
\[
p \neq 0 \Rightarrow p=4
\]
\end{tabular} \& \begin{tabular}{l}
B1 \\
M1A1 \\
m1 \\
A1
\end{tabular} \& \& \begin{tabular}{l}
\(\mathbf{n}_{1} \cdot \mathbf{n}_{2}\) correct \\
forming an equation using scalar product \\
correctly forming and attempting to solve their quadratic equation \\
\(p=4\) stated clearly (must reject \(p=0\))
\end{tabular} \\
\hline \& Total \& \& 5 \& \\
\hline 2(a)
(b) \& \[
\begin{aligned}
\& \operatorname{det} \mathbf{A}^{-1}=-3 \Rightarrow \operatorname{det} \mathbf{A}=-\frac{1}{3} \\
\& \operatorname{det}(\mathbf{A B})=24 \Rightarrow \operatorname{det} \mathbf{B}=\frac{24}{\operatorname{det} \mathbf{A}}=-72 \\
\& \text { Volume }=20 \times 72=1440 \mathrm{~cm}^{3}
\end{aligned}
\] \& \begin{tabular}{l}
B1 \\
M1 \\
A1F \\
A1cso
\end{tabular} \& 3 \& \begin{tabular}{l}
M1 for use of \(\operatorname{det}(\mathbf{A B})=\operatorname{det} \mathbf{A} \times \operatorname{det} \mathbf{B}\) A1F ft their \(\operatorname{det} \mathbf{A}\) \\
Must be positive
\end{tabular} \\
\hline \& Total \& \& 4 \& \\
\hline \begin{tabular}{l}
3(a) \\
(b)
\end{tabular} \& \[
\begin{aligned}
(\mathbf{a}-4 \mathbf{b}) \times(\mathbf{a}+3 \mathbf{b}) \& =\mathbf{a} \times \mathbf{a}-4 \mathbf{b} \times \mathbf{a}+3 \mathbf{a} \times \mathbf{b}-12 \mathbf{b} \times \mathbf{b} \\
\& =-4 \mathbf{b} \times \mathbf{a}+3 \mathbf{a} \times \mathbf{b} \\
\& =7 \mathbf{a} \times \mathbf{b}
\end{aligned}
\]
\[
\begin{aligned}
\& \mathbf{a} \perp \mathbf{b} \Rightarrow \sin \theta=1 \\
\& \Rightarrow|\mathbf{a} \times \mathbf{b}|=|\mathbf{a}||\mathbf{b}| \\
\& \Rightarrow|(\mathbf{a}-4 \mathbf{b}) \times(\mathbf{a}+3 \mathbf{b})|=7|\mathbf{a}||\mathbf{b}| \\
\& \quad \lambda=7
\end{aligned}
\] \& \[
\begin{gathered}
\text { M1 } \\
\text { A1 } \\
\text { A1cso } \\
\text { M1 } \\
\\
\text { A1F }
\end{gathered}
\] \& 3

2 \& | Three terms correct $\begin{aligned} & \mathbf{b} \times \mathbf{b}=\mathbf{a} \times \mathbf{a}=\mathbf{0} \text { - correct use } \\ & 7 \mathbf{a} \times \mathbf{b} \text { or }-7 \mathbf{b} \times \mathbf{a} \end{aligned}$ |
| :--- |
| Use of $\sin \theta=1$ to simplify |
| Should match 'their' 7 |

\hline \& Total \& \& 5 \&

\hline
\end{tabular}

Q	Solution	Marks	Total	Comments
4(a)	$\begin{array}{ll} \mathbf{A}^{2}=\left[\begin{array}{lll} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{array}\right]\left[\begin{array}{lll} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{array}\right] \\ {\left[\begin{array}{ccc} -1 & -2 & -4 \\ = & 6 & 4 \\ 10 & 10 & 9 \end{array}\right]} & \begin{array}{l} p=-1 \\ q=10 \end{array} \end{array}$	B1 B1	2	p-value q-value
(b)	$\begin{aligned} & \mathbf{A}^{3}-6 \mathbf{A}^{2}+11 \mathbf{A}-6 \mathbf{I}=\mathbf{0} \text { multiply by } \mathbf{A}^{-1} \\ & \left(\mathbf{A}^{3}-6 \mathbf{A}^{2}+11 \mathbf{A}-6 \mathbf{I}\right) \mathbf{A}^{-1}=(\mathbf{0}) \mathbf{A}^{-1} \\ & \mathbf{A}^{3} \mathbf{A}^{-1}-6 \mathbf{A}^{2} \mathbf{A}^{-1}+11 \mathbf{\mathbf { A A } ^ { - 1 } - 6 \mathbf { I } \mathbf { A } ^ { - 1 } = \mathbf { 0 }} \\ & \mathbf{A}^{2}-6 \mathbf{A}+11 \mathbf{I}-6 \mathbf{A}^{-1}=\mathbf{0} \\ & 6 \mathbf{A}^{-1}=\mathbf{A}^{2}-6 \mathbf{A}+11 \mathbf{I} \end{aligned}$	M1		Multiplication by \mathbf{A}^{-1}
	$\mathbf{A}^{-1}=\frac{1}{6}\left(\mathbf{A}^{2}-6 \mathbf{A}+1 \mathbf{I I}\right)$	A1	2	AG
(c)	$\mathbf{A}^{-1}=\frac{1}{6}\left[\begin{array}{rrr} 4 & -2 & 2 \\ -1 & 5 & -2 \\ -2 & -2 & 2 \end{array}\right] \quad \begin{aligned} & r=4 \\ & s=-2 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	2	r-value s-value
(d)	$\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\frac{1}{6}\left[\begin{array}{rrr} 4 & -2 & 2 \\ -1 & 5 & -2 \\ -2 & -2 & 2 \end{array}\right]\left[\begin{array}{l} k \\ 5 \\ 7 \end{array}\right]$			
	$=\frac{1}{6}\left[\begin{array}{c} 4 k-10+14 \\ -k+25-14 \\ -2 k-10+14 \end{array}\right]=\frac{1}{6}\left[\begin{array}{c} 4 k+4 \\ 11-k \\ 4-2 k \end{array}\right]$	M1		use of $\mathbf{A}^{-1} \mathbf{v}$ - one row correct
	$x=\frac{2 k+2}{3}, y=\frac{11-k}{6}, z=\frac{2-k}{3}$	$\begin{aligned} & \text { A1 } \\ & \text { A1 } \end{aligned}$	3	correct solution for one variable all correct CAO
	Total		9	
(d)	alternative If solving equations by elimination, M1 A1 for correct solution for one variable, A1 all correct			

Q	Solution	Marks	Total	Comments
	Alternative to 6(c):			
	$\left[\begin{array}{cccc} k-1 & 2 & -1 & 0 \\ 1 & 0 & 1 & 0 \\ 3 & 4 & 0 & 0 \end{array}\right]$	(M1)		Substitute and set up
	$r_{1} \rightarrow r_{1}+r_{2}$	(A1)		Row operation
	$\left[\begin{array}{cccc} k & 2 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 3 & 4 & 0 & 0 \end{array}\right]$			
	$r_{1} \rightarrow r_{1}-\frac{1}{2} r_{3}$	(A1)		Row operation
	$\left[\begin{array}{cccc} k-\frac{3}{2} & 2 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 3 & 4 & 0 & 0 \end{array}\right] \Rightarrow k=\frac{3}{2}$	(A1)		k-value obtained
	$v=\lambda\left(\begin{array}{c} 4 \\ -3 \\ -4 \end{array}\right)$	(M1A1)		M1 obtains v in terms of single vector. A1 correct
	$\frac{x}{4}=\frac{y}{-3}=\frac{z}{-4}$	(B1cao)	(7)	Correct form

Q	Solution	Marks	Total	Comments
7(a)	$\left[\begin{array}{ccc} -a & 0 & a \\ 0 & 6 & 0 \\ a & 0 & 2 \end{array}\right]\left[\begin{array}{l} 0 \\ 1 \\ 0 \end{array}\right]=\left[\begin{array}{l} 0 \\ 6 \\ 0 \end{array}\right]$	M1		
	$\Rightarrow \lambda_{1}=6$	A1	2	
(b)	$\left[\begin{array}{ccc} -a & 0 & a \\ 0 & 6 & 0 \\ a & 0 & 2 \end{array}\right]\left[\begin{array}{l} 1 \\ 0 \\ 2 \end{array}\right]=\left[\begin{array}{c} a \\ 0 \\ a+4 \end{array}\right]$	M1		
	$\begin{aligned} & {\left[\begin{array}{c} a \\ 0 \\ a+4 \end{array}\right]=\left[\begin{array}{c} \lambda_{2} \\ 0 \\ 2 \lambda_{2} \end{array}\right]} \\ & \mathbf{i} \text { component } \Rightarrow a=\lambda_{2} \otimes \\ & \mathbf{k} \text { component } \Rightarrow a+4=2 \lambda_{2} \\ & \text { using } \otimes, \quad a+4=2 a \\ & \\ & \\ & 4 \end{aligned}$	$\begin{aligned} & \text { m1 } \\ & \text { A1 } \end{aligned}$	3	Eliminating λ_{2} Value of a obtained
(c)	Let $\mathbf{v}_{\mathbf{3}}=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$			
	$\left[\begin{array}{rrr} -4 & 0 & 4 \\ 0 & 6 & 0 \\ 4 & 0 & 2 \end{array}\right]\left[\begin{array}{l} x \\ y \\ x \end{array}\right]=-6\left[\begin{array}{l} x \\ y \\ z \end{array}\right]$	M1		Substitute 'their value of a ' and attempt to get a system of equations.
	$\begin{gathered} \Rightarrow-4 x+4 z=-6 x \Rightarrow x+2 z=0 \\ 6 y=-6 y \quad \Rightarrow y=0 \\ {[4 x+2 z=-6 z \Rightarrow x+2 z=0]} \end{gathered}$	A1F		Both equations "correct" FT their a
	$\mathbf{v}_{\mathbf{3}}=\left[\begin{array}{c}-2 \\ 0 \\ 1\end{array}\right]$ (or equivalent)	A1cao	3	
(d)	$\mathbf{D}=\left[\begin{array}{ccc} 6 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & -6 \end{array}\right]$	B1F		Diagonal matrix using -6 and "their 4 " and "their 6 "
	$\mathbf{U}=\left[\begin{array}{ccc} 0 & 1 & -2 \\ 1 & 0 & 0 \\ 0 & 2 & 1 \end{array}\right]$		3	FT their non-zero $\mathbf{v}_{\mathbf{3}}$ in \mathbf{U} \mathbf{U} correct and corresponding to \mathbf{D}
	Total		11	

Q	Solution	Marks	Total	Comments
	$\begin{aligned} & \text { Alternative to 7(c) } \\ & {\left[\begin{array}{ccc} -4 & 0 & 4 \\ 0 & 6 & 0 \\ 4 & 0 & 2 \end{array}\right]\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=-6\left[\begin{array}{l} x \\ y \\ z \end{array}\right]} \\ & \Rightarrow\left[\begin{array}{ccc} 2 & 0 & 4 \\ 0 & 12 & 0 \\ 4 & 0 & 8 \end{array}\right]\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\left[\begin{array}{l} 0 \\ 0 \\ 0 \end{array}\right] \\ & r_{3} \rightarrow r_{3}-2 r_{1} \quad\left[\begin{array}{ccc} 2 & 0 & 4 \\ 0 & 12 & 0 \\ 0 & 0 & 0 \end{array}\right]\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\left[\begin{array}{l} 0 \\ 0 \\ 0 \end{array}\right] \\ & \Rightarrow y=0 \quad x=-2 z \\ & \mathbf{v}_{\mathbf{3}}=\left[\begin{array}{c} -2 \\ 0 \\ 1 \end{array}\right] \quad \text { (or equivalent) } \end{aligned}$	(M1) (A1F) (A1cao)		Row operations "correct" FT their a

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline 8(c)(i) \& \begin{tabular}{l}
Perpendicular vector to \(\Pi=\left[\begin{array}{c}-4 \\ 7 \\ 5\end{array}\right]\) \\
\(\Rightarrow \Pi\) has equation \(-4 x+7 y+5 z=c\) \\
Through \((6,5,17)\)
\[
\begin{aligned}
\Rightarrow c \& =-4(6)+7(5)+5(17) \\
\& =-24+35+85 \\
\& =96 \\
\& \quad \text { Equation is } \quad-4 x+7 y+5 z=96 \\
x=4 \& -4 t ; \quad y=1+7 t ; \quad z=3+5 t
\end{aligned}
\] \\
Line meets plane when
\[
\begin{gathered}
-4(4-4 t)+7(1+7 t)+5(3+5 t)=96 \\
-16+16 t+7+49 t+15+25 t=96 \\
90 t=90 \\
t=1
\end{gathered}
\]
\[
\Rightarrow \text { point of intersection }=(0,8,8)
\] \\
Volume \(=(\overrightarrow{A B} \times \overrightarrow{A D}) \cdot \overrightarrow{A Q}\)
\[
\overrightarrow{A Q}=\left[\begin{array}{c}
5 \\
5 \\
15
\end{array}\right]
\]
\[
\Rightarrow\left[\begin{array}{c}
-8 \\
14 \\
10
\end{array}\right] \cdot\left[\begin{array}{c}
5 \\
5 \\
15
\end{array}\right]=-40+70+150
\]
\[
=180 \text { (cubic units) }
\] \\
Alternative \\
\(\mathrm{Vol}=\) Area of base \(\times\) perp dist \\
Perp distance
\[
\begin{gathered}
=\sqrt{(0-4)^{2}+(8-1)^{2}+(8-3)^{2}} \\
=\sqrt{16+49+25} \\
= \\
\sqrt{90}
\end{gathered}
\]
\[
\begin{aligned}
\text { Volume } \& =6 \sqrt{10} \times \sqrt{90} \\
\& =6 \times 30 \\
\& =180 \text { (cubic units) }
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
m1 \\
A1 \\
B1F \\
M1 \\
A1cao \\
M1 \\
A1F \\
A1cso \\
(M1) \\
(A1F) \\
(A1cso)
\end{tabular} \& 3

(3) \& | ft their perpendicular vector using $(6,5,17)$ |
| :--- |
| ACF |
| parametric form of line |
| substitution of parametric form and attempt to solve for t |
| correct point of intersection |
| Attempt to use formula |
| Follow through $\overrightarrow{A B} \times \overrightarrow{A D}$ from (a)(i). May use $\overrightarrow{B Q}$ etc instead of $\overrightarrow{A Q}$ |
| Volume formula used |
| Perp distance calculated FT their points or the equation of their plane or $\frac{\|-4 \times 1+7 \times 0+5 \times 2-96\|}{\sqrt{(-4)^{2}+7^{2}+5^{2}}}=\sqrt{90} \quad$ etc |

\hline \& Total \& \& 18 \&

\hline \& TOTAL \& \& 75 \&

\hline
\end{tabular}

Q	Solution	Marks	Total	Comments
	Alternative to 8(c)(i) $\mathbf{r}=\left[\begin{array}{c} 6 \\ 5 \\ 17 \end{array}\right]+s\left[\begin{array}{c} 2 \\ -1 \\ 3 \end{array}\right]+t\left[\begin{array}{c} 4 \\ 3 \\ -1 \end{array}\right]$	(M1)		$\mathbf{r}=\mathbf{a}+s \mathbf{d}_{1}+t \mathbf{d}_{2}$ fully correct
	$\left\|\begin{array}{ccc} i & 2+2 s+4 t & -4 \\ j & 4-s+3 t & 7 \\ k & 14+3 s-t & 5 \end{array}\right\|=\left[\begin{array}{l} 0 \\ 0 \\ 0 \end{array}\right]$	$\begin{gathered} (\mathrm{m} 1) \\ (\mathrm{B} 1 \mathrm{~F}) \end{gathered}$		Substitute in $(\mathbf{r}-\mathbf{a}) \times \mathbf{b}=\mathbf{0}$ Use of $\mathbf{r}-\mathbf{a}$ in parametric formsimplified
	$\begin{aligned} & -26 s+22 t=78 \\ & 22 s+16 t=-66 \\ & 10 s+40 t=-30 \end{aligned}$	(A1)		Three correct equations obtained from vector product-terms collected
	$s=-3, t=0$	(M1)		Correctly solving equations to get both parameters
	$\left[\begin{array}{l} 0 \\ 8 \\ 8 \end{array}\right]$	(A1)		Correct point of intersection
	Alternative 2 to 8(c)(i) $\mathbf{r}=\left[\begin{array}{c} 6 \\ 5 \\ 17 \end{array}\right]+s\left[\begin{array}{c} 2 \\ -1 \\ 3 \end{array}\right]+t\left[\begin{array}{c} 4 \\ 3 \\ -1 \end{array}\right]$	(M1)		$\mathbf{r}=\mathbf{a}+s \mathbf{d}_{1}+t \mathbf{d}_{2}$ fully correct
	$\mathbf{r}=\left(\begin{array}{l} 4-4 p \\ 1+7 p \\ 3+5 p \end{array}\right)$	(B1F)		Parametric form of line
	$\begin{aligned} & 2 s+4 t+4 p=-2 \\ & -s+3 t-7 p=-4 \\ & 3 s-t-5 p=-14 \end{aligned}$	(m1)		Equating components, simplifying and attempting to solve-must at least reduce to 2 equations in two unknowns
	$\begin{aligned} & p=2 \\ & t=0 \text { and } s=-3 \end{aligned}$	(M1) (A1)		Solving equations-one parameter correct All values correct
	$\left[\begin{array}{l} 0 \\ 8 \\ 8 \end{array}\right]$	(A1)		Correct point of intersection

